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ABSTRACT Proposed Method

ABSTRACT. A theorem of Hardy, Littlewood and Polya
has been used to represent the variational form of
shortest path problem (SPP). As consequence of
theorem, the SPP is converted into optimal control
problem. In this paper, simply Generalized Lagrange
Chebyshev collocation method is applied for solving
the SPP. Wefinally present our numerical findings that

N

By substitution s(x) ~ sy(z) = ) a;L¥(x) in Eq. (1.1) and using
i=0

Gauss-Chebyshev integration rule and also collocate at zeros of shifted

Chebyshev polynomial of degree N — 2 in constraints, the problem is
converted to following NLPs as follows:

8
Min J:/ \/1+8’2(t)dt:

N

ZCiG(CLi,...,aN),

1=0

demonstrate the efficiency and applicability of the s.t. Fi(x;) < s(z;) < Fy(z;), j=0,..,N—2
numerical scheme by considering an example. s(a) =z, s(B8)=u.
That simply could be solved using NLPSolve command in MAPLE

software.

INTRODUCTION

Example 3.1. Consider the given SPP in| | with one lower barrier

\/1 + 2 (t)dt,

5/4
The SPP has been considered in several works for example see [ —], Min J = /
the SPP is modelled as follows: —5/4

| 5 5 5 5
3 subject to z(t) > 1—t°, V, € vl ® (—Z> =0, = (Z) = 0.
Min J = / \/1 + 87 (t)dt, (1.1) ] ]
a Where the optimal value of the objective functional is J* = 3.26911
and the exact solution of this SPP is as follows:
subject to  Fy(t) < s(t) < Fa(t), Vi € [a, 6],
f 5! 5) 1 (D 5) 4
s(a) =x9, s(B) =1 T figtf_ﬁ’ =2 Zk+51’ = §4k§_ﬁ’4
X*(t)=1-12, —-<t<, — Xk ={1- (302 o <k< o
For solving the SPP problem, unknown function is approximated based P 1_.25 5,5 [ e
on Generalized Lagrangian Chebyshev polynomials and by utilizing \ 4 2= 74 . 10 =
Gauss-Chebyshev integration rule see |'], and collocate in zeros of

shifted Chebyshev polynomials, the problem is converted to nonlin-

ear programming problems (NLPs) that simply could be solved using
NLPSolve command in MAPLE software.

Preliminaries

Tables and Figures

TABLE 1. Numerical solution result of J* for Example 3.1.

. . pe Legendre collocation
2.1. Generalized Lagrange functions. Suppose w(z) = | [._,(u(x)— (LC) method [ /] Present method
u(x;)) and u(x) is continuous and sufficiently differentiable function, N Jt N JE
the generalized Lagrange functions are defined as follows: A 396019 6 396969
8 3.26492 9 3.26861
w(z wiw (T w(x ,
Li(z) = 0 = )(0) ™ — . ‘7)(,() )( ) :kj( _( )), 7=0,..,N, 18 3.26920 12 3.26887
S VA I A e 2.1) 32 3.26911 |13  3.26911
where k; = au;j%xj)' Furthermore, the generalized Lagrange functions

are satisfied in the Kronecker delta property. For more details see | ].

2.2. Generalized Lagrange Chebyshev functions. Chebyshev poly- TABLE 2. Numerical comparison for z% (k;) for Example 3.1.

nomials are orthogonal in the interval [—1, 1], and by introducing the

change of variable z = 52 (v — a) — 1 the so-called shifted Chebyshev exact solution | LC method [/] | Present method
. . . k; z*(k;) N=32 |Error|| N=22 |Error|
polynomials are defined that are orthogonal in the interval |«, 5]. In =i TR0 000 — 50000 T T.0000— 0000
generalized Lagrange Chebyshev functions, w(x) in Eq. (2.1) could be 03 0.2500 0.2503  0.0003 | 02500  0.0000
considered as tollows: 0.6 05000 |0.5007  0.0007 |0.4999  0.0001
w(z) = Py(u(z)) -0.4 0.7500 0.7505 0.0005 | 0.7504 0.0004
. . . -0.2 0.9375 0.9375 0.0000 | 0.9374 0.0001
and x; 7 = 1..N + 1 are zeros of shifted Chebyshev polynomial of 0.0 1.0000 1.0000 0.0000 | 1.0003 0.0003
degree N+1. The assumed function s(x) that is defined over the interval 0.2 0.9375 0.9375  0.0000 | 0.9374  0.0001
[()4’ ﬂ] may expanded as’ 0.4 0.7500 0.7505 0.0005 | 0.7509 0.0009
o 0.6 0.5000 0.5007 0.0007 | 0.4998 0.0002
_ T 0.8 0.2500 0.2503 0.0003 | 0.2498 0.0002
2 Z L (@), 1.0 | 0.0000  |0.0000  0.0000 |0.0000  0.0000
| = Total error 0.0030 0.0023
for more details see | ].
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barrier — - numerical result

FIGURE 1. Optimal solution history of Example 3.1. with one
lower boundary barrier for N = 22.
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