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Introduction
Suppose that we wish to find the reproduction number R(t) of an epidemic. Typically, only epidemic data is used to infer R(t). However, epidemic data
is often noisy, partially observed or biased. Genomic data is therefore increasingly being used to understand infectious disease epidemiology. The aim of
this work is to incorporate both epidemic and genomic information into a joint model to infer R(t). The epidemic data considered will be prevalence,
which is defined as the total number of cases per day. However, we are unlikely to have access to complete prevalence data. Instead, we will have observed
prevalence which may be noisy and/or incomplete. The genomic data will take the form of a dated phylogenetic tree.

Epidemic process
We model the epidemic as a non-homogeneous linear birth-death process
with unknown birth rate β(t) and known constant death rate γ.
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Figure 1: Birth-death process

In a birth-death model of disease outbreak, R(t) = β(t)/γ.

State-space model (SSM)
The epidemic is observed discretely on days 1, . . . , M , so we discretise β(t),
the phylogeny G and the latent epidemic E to fit into a state-space model
framework.
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Figure 2: SSM showing relationships between birth rates β1:M , the la-
tent epidemic E0:M , the observed epidemic N1:M and the dated phylogeny
G1:M .

We use a Bayesian approach to find the birth rate trajectory β and hyper-
parameters θ given the known death rate γ, the observed epidemic N and
the dated phylogeny G:

p(β, θ | γ, N, G) ∝ p(β, θ)p(γ, N, G | β, θ)

= p(θ)p(β | θ)
∫

p(E | β, γ)p(N | E, θ)p(G | β, E) dE.
(1)

Bayesian modelling
Model hyper-parameters are θ = (b, σ, p) where b is the birth rate on day
1, σ is the standard deviation of the change in birth rate between days and
p is the proportion of true cases observed. Priors used are:
• b ∼ Exponential(1)
• σ ∼ Exponential(10)
• p ∼ Uniform(0, 1)
• β1 | b ∼ Uniform(0, b)
• βm | βm−1, σ ∼ Normal(βm−1, σ2) with reflection off 0

Likelihoods used are:
• Em | βm, γ, Em−1 = xm−1 ∼ Skellam(βmxm−1, γxm−1)
• Gm | βm, Em = xm ∼ Binomial

((
am

2
)
, 1 − exp(2βm/xm)

)
, where am is

the number of lineages and cm is the number of coalescences on day m

• Nm | Em = xm, p ∼ Binomial(xm, p)

Particle-marginal Metropolis–Hastings (PMMH)
We have implemented a PMMH algorithm [1] to target p(β, θ | γ, N, G).
θ∗ is proposed according to a multivariate Normal distribution. We then
run a sequential Monte Carlo (SMC) algorithm with adaptive resampling
[2] to get an unbiased estimator for p(β | θ)

∫
p(E | β, γ)p(N | E, θ)p(G |

β, E) dE. Within the SMC, we propose β1:K
m according to its prior and

we propose E1:K
m using a negative binomial distribution if Nm > 0 and

according to its prior otherwise. The estimate of the marginal likelihood
p̂θ∗(β, γ, N, G) as well as one birth rate and prevalence trajectory β∗, E∗

are carried into the random walk Metropolis–Hastings. We have imple-
mented backward simulation [3] to choose the single trajectories β∗ and
E∗ to keep in order to avoid the problem of path degeneracy. θ∗, β∗ and
E∗ are jointly accepted with probability:

1 ∧ p(θ∗)p̂θ∗(β∗, γ, N, G)
p(θ)p̂θ(β, γ, N, G) .

Simulations
We have simulated a 30-day epidemic with constant R(t) = 3. The death
rate γ = 0.1, so β(t) = 0.3. 5% of the true prevalence is observed each
day and 5% of the cases on day 30 are used to generate the phylogeny. We
have applied our method using only epidemic data and using both epidemic
and genomic data to see whether genomic data provides any benefit. The
chains were both initialised at b0 = 1, σ0 = 0.01 and p0 = 0.5 and run for
100,000 iterations. The number of particles used was 100.
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Figure 3: Posterior birth rate. Black lines denote the posterior mean. Blue
lines denote the posterior 95% credible intervals. The red line denotes
the true birth rate trajectory. Solid black/blue lines used epidemic and
genomic data. Dashed blue/black lines used only epidemic data.

It can be seen from Figure 3 that whilst epidemic data alone provides a
good estimate of the posterior mean, incorporating the genomic data has
significantly reduced the uncertainty around this estimate. This is done
with minimal increase to the run time; the chain using only epidemic data
ran in 76 minutes and the chain using epidemic and genomic data ran in
80 minutes.
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