

Bayesian Modelling and Sequential Learning of Latent COVID-19 Epidemic Dynamics

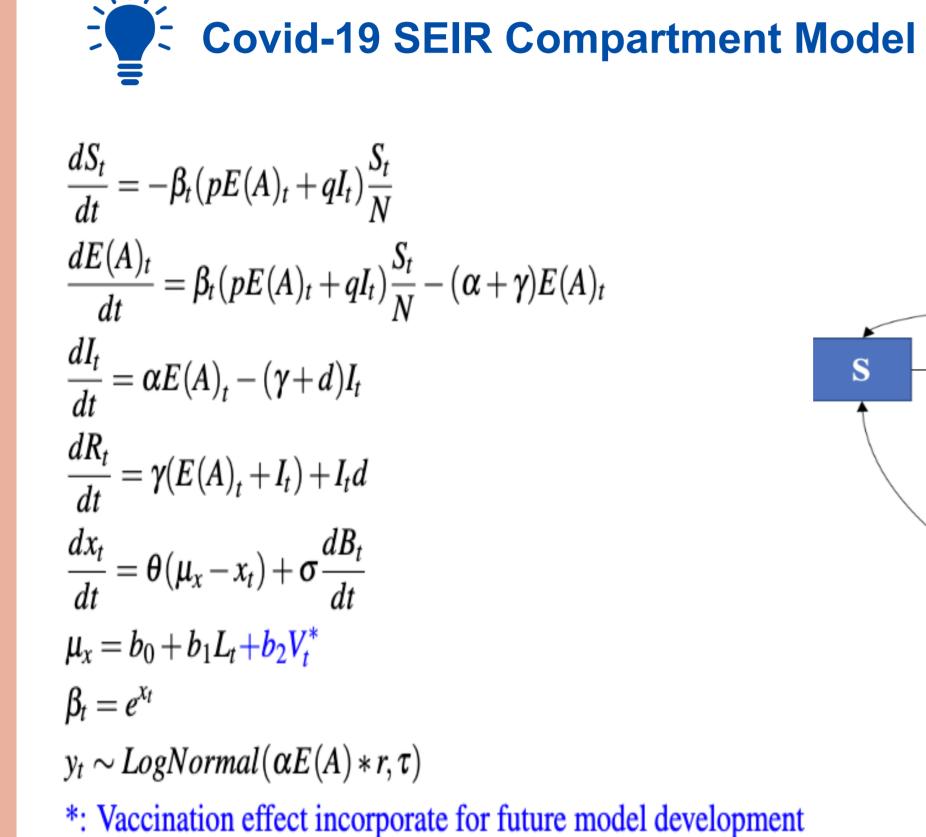
Molly Cui¹; Michael Pitt¹; Marina Riabiz¹ ¹King's College London, UK

Abstract

The global outbreak of the COVID-19 pandemic and its variants have severely affected the world health system and population. Sequential real-time disease surveillance models based on a Hidden Markov structure have played a prominent role in the evaluation and forecasting of epidemic infectious dynamics over time. In this work, we consider a novel Susceptible-Exposed (including Asymptomatic)-Infected- Removed (SE(A)IR) epidemic compartment model with a stochastic transmissions rate, in which we take into consideration the number of asymptomatic individuals that are still infectious. We also incorporate the effects of non-pharmaceutical interventions by adopting a mean-reverting Ornstein-Uhlenbeck process with embedded lockdown and vaccination factors for the transmission rate time-varying parameter. Bayesian inference is performed through the particle Markov chain Monte Carlo (p-MCMC) algorithm to simultaneously estimate parameters and latent epidemic status states.

Model Design

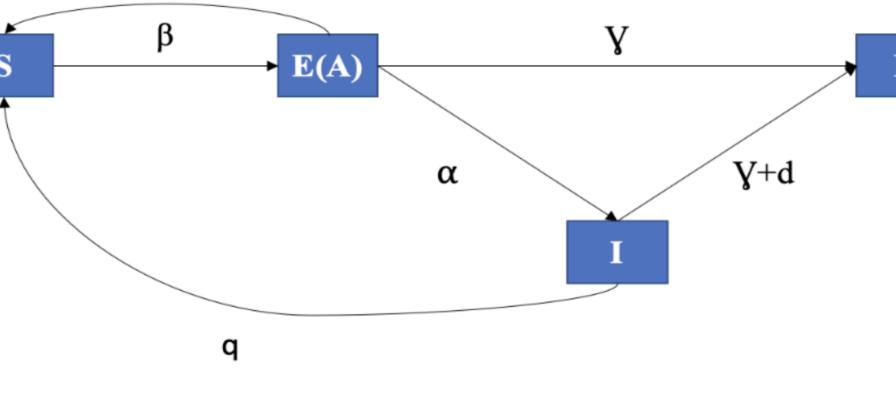
Prior work & Contributions



Parameter: Pre-setting parameters are: (d, p, q, r)' whereas parameters to be estimated: $\Theta = (\alpha, \gamma, \theta, \tau, b_0, b_1, b_2)'$

(a) α : latency or onset symptoms development rate (where $\frac{1}{\alpha}$ is the mean time to onset of infectious)

(b) γ : recovered rate $(\frac{1}{\gamma})$ is the average time for an individual recover from the disease infectious



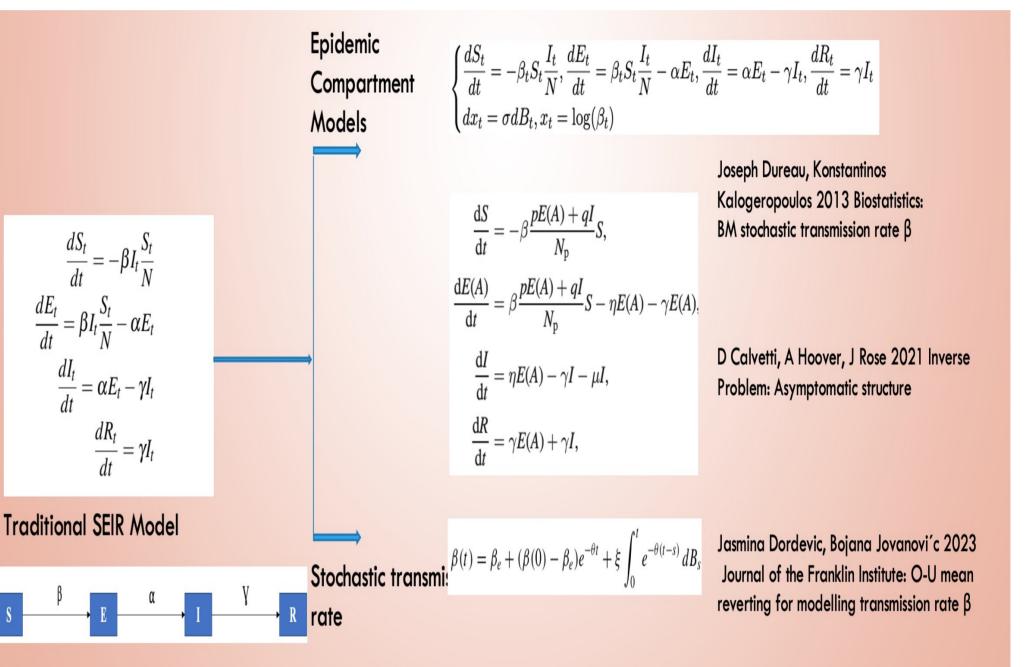
р

Figure 1. Infection chain of SE(A)IR compartment model

we take into consideration the number of COVID-19 asymptomatic individuals that are still infectious. We also incorporate the effects of non-pharmaceutical interventions by a meanreverting Ornstein-Uhlenbeck process with embedded lockdown and vaccination factors for the transmission rate time-varying parameter. Bayesian inference of parameters and states will be conducted simultaneously using Particle-MCMC

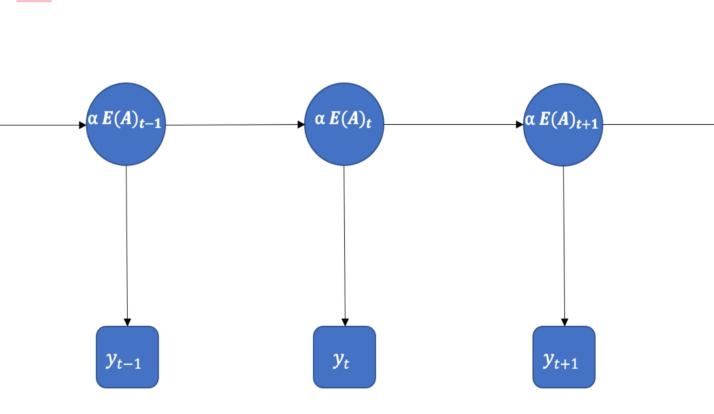
State & Parameter Inference

Algorithm 1 Particle MCMC algorithm*



Our work contribution: By adopting an asymptomatic case and exposed case combined structure,

- system)
- (c) θ : O-U process long-term mean reverting speed
- (d) b_0 , b_1 and b_2 are coefficients in O-U time varying drift μ_x
- (e) τ : sd of observation distribution
- (f) p: stands for the proportion of infectious counts (asymptomatic cases) in the compartment E(A); q: self-quarantine and hospital admitted symptomatic cases' virus spreading rate
- (g) r: underreport rate
- (h) d is the death rate



State Space Form

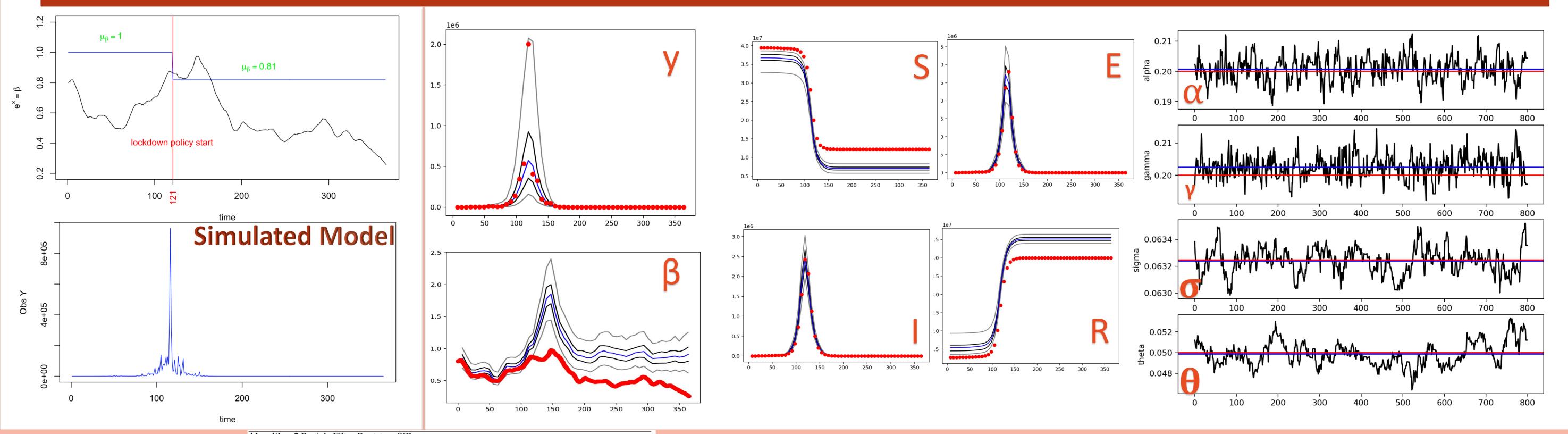
1. Initialize at iteration 0, j=0: -Set $\Theta_{(0)}$ equals to prior means -Run Bootstrap particle filter with $\Theta = \Theta_{(0)}$, gain results: $\tilde{z}_{1:T(0)}$ and marginal likelihood estimate: $l_{\Theta_{(0)}}$ 2. For iteration $i \ge 1$: Given the chain at $\Theta_{(i-1)}$ and $z_{1:T(i-1)}$: -Sample $\Theta^* \sim q(\Theta^* | \Theta_{(i-1)})$ -Run Bootstrap particle filter targeting at $p_{\Theta^*}(z_{1:T}|y_{1:T})$, gain results: $\tilde{z}_{1:T(*)}$ and marginal likelihood estimate: $l_{\Theta^{(*)}}$ 3. Accept $\Theta^{(*)}$ and $\tilde{z}_{1:T(*)}$ with probability:

$$rac{l_{\Theta^{(*)}}p(\Theta^{*})}{l_{\Theta_{(i-1)}}p(\Theta_{(i-1)})}rac{q(\Theta_{(i-1)}|\Theta^{*})}{q(\Theta^{*}|\Theta_{(i-1)})}$$

-Accept proposal values: then set $\Theta_{(i)} = \Theta^*$, $z_{1:T(i)} = z_{1:T}^*$ and $l_{\Theta_{(i)}} = l_{\Theta^*}$ -Otherwise, returns to i-1 th iteration values * P-MCMC is implemented using LibBi-RBI package that developed by Pierre E. Jacob, Anthony Lee, Lawrence M. Murray, Sebastian Funk, Sam Abbott(2021)

y: observations of new daily/weekly confirmed cases; αE(A): increasing symptomatic infections

Simulations & Results



Appendix: Bootstrap **Particle Filter** Algorithm

Algorithm 2 Particle Filter-Bootstrap SIR **States**: $z_t = (S_t, E(A)_t, I_t, R_t, x_t)$

1. Initialize at t=0: draw N samples from a presetting initial state density

 $z_0^{(i)} \sim p(z_0)$

for $i = 1, 2, 3, \dots P$, and set initial importance weights as $\omega_0^{(i)} = \frac{1}{P}$

2. For time $t = 0, 1, 2, 3 \cdots T - 1$, assume we already have resampled particles $\tilde{z}_t^{(i)}$ from the last time step (except from time step 0 to 1, we directly use $z_0^{(l)}$):

2.a Propagation step: Generate samples $z_{t+1}^{(i)}$ from the Bootstrap importance density:

 $z_{t+1}^{(i)} \sim p(z_{t+1} | \tilde{z}_t^{(i)}, \Theta)$

for $i = 1, 2, 3, \dots P$

2.b Filtering step: Calculate the importance weights for $i = 1, 2, 3, \dots P$ at time t + 1:

$$\boldsymbol{\omega}_{t+1}^{(i)} \propto \boldsymbol{\omega}_{t}^{(i)} p(y_{t+1}|z_{t+1}^{(i)}, \boldsymbol{\Theta}_{t+1}^{(i)})$$

As well as the normalized importance weights for $i = 1, 2, 3, \dots P$:

$$ilde{oldsymbol{\omega}}_{t+1}^{(i)} = rac{oldsymbol{\omega}_{t+1}^{(i)}}{\sum_{j=1}^P oldsymbol{\omega}_{t+1}^{(j)}}$$

3. Resampling step: Resample the particles at t + 1 generated at step 2.a according to the normalized weights as their respective probability masses:

$$ilde{z}_{t+1}^{(i)} \sim \sum_{i=1}^{P} ilde{\omega}_{t+1}^{(i)} \delta(z_{t+1} - z_{t+1}^{(i)})$$

After resampling, the weights now are uniformly: $\omega_{t+1}^{(i)} = \frac{1}{P}$ for $i = 1, 2, 3, \dots P$.

References

1. D Calvetti, A Hoover, J. Rose. E. Somersalo. (2021). Bayesian particle filter algorithm for learning epidemic dynamics. Inverse Problem, (37-115008)

2. Jasmina Dordevic, Bojana Jovanovi´c (2023) Dynamical analysis of a stochastic delayed epidemic model with Levy jumps and regime switching. Journal of the Franklin Institute, (360 (2023)):1252–1283.

3. Joseph Dureay, Konstantinos Kalogeropoulos. (2013). Capturing the time-varying drivers of an epidemic using stochastic dynamical systems. Biostatistics, (vol14-3):541–555.

4. Murray, L. M. (2013). Bayesian state-space modelling on high-performance hardware using libBi. arXiv:1306.3277.5/5

5. Christophe Andrieu, Arnaud Doucet, R. H. (2010). Particle markov chain monte carlo methods. Journal of Statistical Society, (Series B):269-342