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we take into consideration the number of asymptomatic individuals t
adopting a mean-reverting Ornstein-Uhlenbeck process with embedc

The global outbreak of the COVID-19 pandemic and its variants have severely affected the world health system and population. Sequential real-time disease surveillance
models based on a Hidden Markov structure have played a prominent role in the evaluation and forecasting of epidemic infectious dynamics over time. In this work, we
consider a novel Susceptible-Exposed (including Asymptomatic)-Infected- Removed (SE(A)IR) epidemic compartment model with a stochastic transmissions rate, in which

Abstract

nat are still infectious. We also incorporate the effects of non-pharmaceutical interventions by
ed lockdown and vaccination factors for the transmission rate time-varying parameter. Bayesian

inference is performed through the particle Markov chain Monte Car

o (p-MCMC) algorithm to simultaneously estimate parameters and latent epidemic status states.
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(a) o: latency or onset symptoms development rate (where é is the mean time to onset of
infectious)

(b) 7: recovered rate (% is the average time for an individual recover from the disease infectious
system)

(c) 6: O-U process long-term mean reverting speed

Figure 1. Infection chain of SE(A)IR compartment model

we take into consideration the number of COVID-19 asymptomatic individuals that are st
infectious. We also incorporate the effects of non-pharmaceutical interventions by a mean-
reverting Omstein-Uhlenbeck process with embedded lockdown and vaccination factors for the
transmission rate time-varying parameter. Bayesian inference of parameters and states will be
conducted simultaneously using Particle-MCMC

State & Parameter Inference

State Space Form

Algorithm 1 Particle MCMC algorithm*

1. Initialize at iteration 0, j=0:

-Set ©(g) equals to prior means.

-Run Bootstrap particle filter with ® = © (), gain results: Z;.7 () and marginal likelihood estimate: l®(0)
2. For iteration i > 1: Given the chain at ®(;_;) and z.7(;_1):

(d) by, by and b, are coefficients in O-U time varying drift ,
(e) 7: sd of observation distribution

(f) p: stands for the proportion of infectious counts (asymptomatic cases) in the compartment
E(A); q: self-quarantine and hospital admitted symptomatic cases’ virus spreading rate

(g) r: underreport rate

(h) d is the death rate

-Sample @* ~ g(@*|®(;_y))

-Run Bootstrap particle filter targeting at pe-(z1.7|y1.7), gain results: Zj.r(.) and marginal likelihood
estimate: /g

3. Accept ®*) and Z1.7(+) With probability:

logP(®%) q(O;_1)|0")
lo,_,,P(©(i-1)) 4(®*|Oi_1))

®

-Accept proposal values: then set ®;) = ©%, z.7(;) = z].; and lg 0 = lo+

-Otherwise, returns to i — 1 th iteration values

* P-MCMC is implemented using LibBi-RBI package that developed by Pierre E. Jacob, Anthony Lee,
Lawrence M. Murray, Sebastian Funk, Sam Abbott(2021)

ﬁ u

y: observations of new daily/weekly confirmed

cases; aE(A): increasing symptomatic infections

Simulations & Results
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Algorithm 2 Particle Filter-Bootstrap SIR
States: z; = (S, E(A), I, Ry, x;,)’

Appendix: Bootstrap References

Particle Filter
Algorithm

1. Initialize at t=0: draw N samples from a presetting initial state density:

20 ~ p(zo0)

fori=1,2,3,--- P, and set initial importance weights as a)(()i) = }D
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. Fortimer =0,1,2,3---7 — 1, assume we already have resampled particles Z,(i) from the last time
step (except from time step O to 1, we directly use z(()’)):

2.a Propagation step: Generate samples zf?_l from the Bootstrap importance density:

2D~ p(ze1122,©)

fori=1,2,3,---P
2.b Filtering step: Calculate the importance weights fori =1,2,3,---P attime 7 + 1:
wt(_l;_)l o< wt(l)P(}’t+1 |zt(ff)—l ,©)
As well as the normalized importance weights fori =1,2,3,--- P:

o,

Zi'):l wt(—{—)l

) _
r+1

Resampling step: Resample the particles at 7 + 1 generated at step 2.a according to the normalized
weights as their respective probability masses:

; P . .
25531 ~ Zl d)t(—ll—)ls(zt"‘l —25531)
=

After resampling, the weights now are uniformly: a)t(j_)l = % fori=1,2,3,---P.
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