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Heterogeneity in biology
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See Figure 2

Identically prepared tumour spheroids from an in vitro ex-
periment. Melanoma cells are induced with fluorescent cell 
cycle indicators (green indicates proliferation, magenta indi-
cates cells in gap 1).

Figure 2

Experimental measurements of tempo-
ral tumour spheroid radius described 
using the logistic growth model with 
additive normal noise. Shown is experi-
mental data (blue) and model prediction 
(mean and 95% prediction interval).

Figure 3
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Flourescent measure-
ments relating to amount 
of internalised molecules 
in ~10 000 C1R cells.

Figure 1

• Biological variability is seen even in tightly controlled 
experiments  (figs. 1 and 2).

• Such variability is routinely captured in quantitative 
analysis by coupling a deterministic mathematical 
model to an independent probabilistic observation 
process.

• For example, consider coupling observations of tumour 
spheroid radius,          , to the logistic growth model 
using normal noise:

• The model is capable of recapturing experimental ob-
servations (fig. 3). 

 But what about variability in the initial condi-
tion and the dynamical parameters?

Dealing with parameter variability

• We aim to better capture potential sources of variability 
by describing parameters and measurements as 
random variables.

• We take a fast, novel direct approach and construct an 
approximate output distribution for a given model and 
set of input (parameter) distributions.

• Consider that the mathematical model maps inputs (i.e., 
parameters),   , to a set of outputs,         . Then we wish 
to approximate the distribution of         . 

One-dimensional example
• Consider that both input and output are one-dimension-

al, then expectation of the Taylor expansion of         
about              yields

• We can do this for inputs and outputs of any dimension 
yielding analytical approximations for the mean, cova-
riance, and skewnesses of         in terms of the mo-
ments of   .

• We then approximate the distribution of          using 
normal and gamma distributions with the same mo-
ments (fig. 4).
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Approximate solution to the logistic model 
with random parameters using a moment- 
matched normal distribution (blue; two 
moments) and gamma distribution (red; three 
moments).

Figure 4

Random parameter logistic model

• We can directly construct a likelihood using our        
approximate output distribution, which describes the 
data distribution for a given set of input distributions 
and allows application of any likelihood-based            
inference tool (here, we use profile likelihood).

Parameter inference

• Consider the logistic model with parameter distribution

 
 where                                                                    is a 

vector of unknown “hyperparameters” that we wish to 
infer.
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Profile likelihoods for random parameter logistic model using synthetic data 
(fig. 6). Horizontal line shows the threshold for a 95% confidence interval.
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Synthetic data and predictive 
distribution (mean and 95% 
prediction interval) for the 
random parameter logistic 
model.

Figure 6
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• In addition to inferring parameters and quantifying un-
certainty, we much more accurately capture the vari-
ability in the data (fig. 6).
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• Julia module for implementation can be applied to 
any differential-equation model, for a wide variety of 
input distributions (correlated, bimodal, skewed, etc).


