Modelling heterogenity with random parameters
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e Biological variability is seen even in tightly controlled
experiments (figs. 1 and 2).

e Such variability is routinely captured in quantitative
analysis by coupling a deterministic mathematical
model to an independent probabilistic observation
process.

e For example, consider coupling observations of tumour
spheroid radius, r°"*(t), to the logistic growth model
using normal noise:

r(t)

dg(tt) = A\r(t) (1 B ) , r(0) = ro.
roP (1) = r(t) + &, e ~N(0,07).

e The model is capable of recapturing experimental ob-
servations (fig. 3).

But what about variability in the initial condi-
tion and the dynamical parameters?
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e \\le aim to better capture potential sources of variability
by describing parameters and measurements as
random variables.

e \We take a fast, novel direct approach and construct an
approximate output distribution for a given model and
set of input (parameter) distributions.

e Consider that the mathematical model maps inputs (i.e.,
parameters), 0, to a set of outputs, £(0). Then we wish
to approximate the distribution of f(8).

e Consider that both input and output are one-dimension-
al, then expectation of the Taylor expansion of f(6)
about 6 = (0) yields
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e \\e can do this for inputs and outputs of any dimension
yielding analytical approximations for the mean, cova-
riance, and skewnesses of f(60) in terms of the mo-
ments of 6.

e \We then approximate the distribution of f(0) using
normal and gamma distributions with the same mo-
ments (fig. 4).
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Approximate solution to the logistic model
with random parameters using a moment-
matched normal distribution (blue; two
moments) and gamma distribution (red; three
moments).
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e \We can directly construct a likelihood using our

approximate output distribution, which describes the
data distribution for a given set of input distributions
and allows application of any likelihood-based
inference tool (here, we use profile likelihood).

e Consider the logistic model with parameter distribution
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ro ~ N (:u’r’ovggg) ; A~ N (,U)\,O'i) ;
RNN(MR,O'%%), ewN(O,Ug),
where & = [,LLTO,,LLA,,uR,lnarO,anA,lnaR,lnag}T IS a

vector of unknown “hyperparameters” that we wish to
infer.
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e |n addition to inferring parameters and quantifying un-

e Julia module for implementation can be appliedto

certainty, we much more accurately capture the vari-
ability in the data (fig. ©6).

any differential-equation model, for a wide variety of @&
input distributions (correlated, bimodal, skewed, etc).
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