Introduction

Microscopic

Point processes are a rich and flexible class of models that can be put to use
- to answer quantitative questions in science and engineering. Determining
I m ag es ro m a the best way to map a real-world application to the models is not always

straight forward and the interpretation of any findings needs to be done in
light of the subject matter interpretation of the point process model.

N
p O I nt p rO ces S We use point processes for to model the location of microtubules in cell

biology. Image data is collected using fluorescent microscopic. It captures
the locations of certain protein species under different conditions.VVe have

_
pe rs pe Ct I ve developed distribution-free procedures to quantify the significance of

observed differences between the resulting point pattern structures.

The approach is illustrated by experimental data shedding light on the
interplay between subcellular structures called microtubules and chemicals

T Honnor, A Johanson, J Brettschneider involved in mitosis.

Methods: Point Processes Models Methods: Technology & Data
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sicOlE Encyeiepedis BllSHes: e, https://www.wikiwand.com/en/Fluorescence_microscope
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for finite B in R?, and b(z,r) the disc centred at z with radius .

Experimental case study Exploratory analysis and nonparametric tests

Stephen Royle’s Lab (Centre for Mechanochemical Cell Biology, WMS): Y —.— e Result confirmed by formal testing.
Role of TACC3 protein for the structure of microtubules within K-fibres and mesh? Procedure:

Experiment: Overexpression of TACC3 through treatment versus control. = Based on permutation tests (nonparametric)

Microscopic images collected in planes perpendicular to the fibre axes. ; : ; ¢ é I\::eed exchangeability under the Null under suitable set
if é ;. 5 ' of operations

Microtubule . . o . | " Statistics under permutations are identically distributed
. e Centrosomes = centrioles + microtubules " . . - ¥ ) o )
p-values are uniformly distributed (test e.g. with KYS)
Exact or approximate (subset of operations)
Still significant after Bonferroni adj. for multiple testing

* Centrioles help the spindle into proper formation e

* Spindle microtubules are arranged in K-fibers

* Intertubule bridges formed by mesh
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p-value for two-sided test of Hy using statistic ¢ :
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Conclusions References
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Point process models in conjunction with nonparametric test statistics are suitable methods
Differences in spatial point patterns with application to subcellular biological structures

for microscopic image data:

* can deliver results were experiment not interpretable by just eyeballing Honnor TR, Johansen AM and Brettschneider JA (2017)

* computationally feasible A nonparametric test for dependency between estimated local bulk movement patterns
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Microtubule organization within mitotic spindles revealed by serial block face scanning EM and
image analysis

Experimental case study: the collection of test statistics provides evidence that

* Nearby microtubules are bound together (in K-fibers by a mesh-like structure)
* TACC3 over expression (treatment) is associated with an impact on the mesh
This means, the hypothesised treatment effect could be confirmed
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