

Estimating the ratio between the contagiousness of two viral strains

G. Della Croce¹, G. Mastrantonio¹, F. Cerutti², V. Ghisetti², M.Gasparini¹, E. Bibbona¹,

 1 DISMA, Politecnico di Torino, Italy, 2 Amedeo di Savoia Hospital, ASL Città di Torino, Italy

Abstract

• We propose a new method for the estimation of the contagiousness ratio between a new emerging variant and the one currently dominating within a population. By defining the new daily recoveries as $\rho_t^{tot} = R_t^{tot} - R_{t-1}^{tot}$ (split as $\rho_t^{tot} = \rho_t^1 + \rho_t^2$), we can easily state that, $\forall t$:

$$\mathbf{I_t^2} = \mathbf{I_{t-1}^2} + \mathbf{Y_t^2} - \rho_t^2$$

This provides a recursive relation for the I_t^o terms $\longrightarrow \mathbf{I_0^2}$ additional parameter of our model.

The latter because of Eq. (1) and the fact that

```
\rho_t^2 | I_{t-1}^2 \sim \text{HyperGeom}\left(I_{t-1}^{tot}, I_{t-1}^2, \rho_t^{tot}\right)
```

Our inferential procedure is based on a **MCMC algorithm**, where the prior distributions assigned to the parameters are $k \sim \text{Unif}(0.05, 20)$ and $I_0^2 \sim \text{DUnif}(1,1000)$. When proposing new values in our MCMC, some admissibility constraints need to be fulfilled.

- Our method takes in input incidence data and epidemic curves. It is based on a discrete-time SIR with two strains in its deterministic and stochastic version.
- The method is applied to the ISS quick surveys data on virus SARS-CoV-2, for the Piedmont Italian region from December '21 to January '22 (Omicron and Delta variants)
- The estimated contagiousness ratio is [3.7, 5.48] with the deterministic model and [3.21, 3.98] with the stochastic one.

The Data

Let us consider a given situation in which there is a disease with two strains, that compete for the infection of the population. Strain 1 (Delta, δ) is currently dominating, while strain 2 (Omicron, o) starts emerging at the beginning of the analysis. Every day t, the available data are:

Deterministic Approach

The terms Y_t^2 , ρ_t^2 (hence I_t^2), $\forall t$, are assumed to follow a deterministic law given by:

$$X_{t}^{2} = rac{kI_{t-1}^{2}}{kI_{t-1}^{2} + I_{t-1}^{1}} Y_{t}^{tot}, \quad
ho_{t}^{2} = rac{I_{t-1}^{2}}{I_{t-1}^{2} + I_{t-1}^{1}}
ho_{t}^{tot},$$

- Each term I_t^2 can be computed recursively (Eq. (1)), and it is ultimately a function of k and I_0^2 .
- The log-likelihood of the z_t 's can be explicitly computed and numerically maximised.

	Par.	Est.	As. 95% C.I.	P.B. 95% C.I.
	k	4.4	[3.7, 5.48]	[3.76, 5.57]
	I_0^o	21.3	[5.75, 64.5]	[4.92, 56.3]
Table 1: ML estimates and 95% C.I. of the parameters				

Constraints to be imposed

•
$$I_{t-1}^* \ge \rho_t^*$$
, for $* = 1, 2$

•
$$\rho_t^2 \ge 0$$
 and $\rho_t^2 \le \rho_t^{tot}$

• Bound constraints for each variable

The traceplots obtained for the parameters are depicted in Figure 4 and 5. The posterior medians and 95% credible intervals are **3.34** and [**3.1**, **3.6**] for **k**, **126** and [**88**, **169**] for I_0^2 . The estimated Omicron relative incidence curve p(t) is depicted in Figure 6.

- I^{tot} Total active cases, I^{tot} = I¹_t + I²_t;
 Y^{tot} Total new cases, Y^{tot} = Y¹_t + Y²_t;
 n_t random samples from Y^{tot}_t sent to sequencing facilities; z_t of them turn out to belong to strain 2
- $\rightarrow z_t/n_t$ provides an estimate of strain 2 relative incidence, and it is natural to state that: $z_t \sim \text{HyperGeom}(Y_t^{tot}, Y_t^2, n_t)$

The Model

Figure 2: Omicron relative incidence curve p(t)

Stochastic Approach

Figure 4: Traceplot and posterior density of parameter k

Figure 5: Traceplot and posterior density of parameter I_0^2

Figure 6: Omicron posterior incidence curve

In **conclusion**, what we observe:

Figure 1: Two-strained discrete-time SIR model

Since our data are daily observations, discretetime models will be adopted. In particular, one deterministic and one stochastic, both based on the compartmentalisation depicted in Figure 1.

Goal of our analysis is the estimation of parameter \mathbf{k} , defined as:

-10 -1 -1

Figure 3: Stochastic model

The stochastic model results in a **Hidden Markov Model**, in which the hidden process is represented by the couple (Y_t^2, I_t^2) , while the observable process is constituted by the z_t terms:

$$z_t | Y_t^2 \sim \text{HyperGeom}\left(Y_t^{tot}, Y_t^2, n_t\right)$$

$$Y_t^2 | (k, I_{t-1}^2) \sim Bin \left(Y_t^{tot}, \frac{kI_{t-1}^2}{I_{t-1}^{tot} + (k-1)I_{t-1}^2} \right)$$

• Both methods fit well the data, Omicron appears to be **3** or **4** times **more contagious**

than Delta

• The stochastic method is certainly more robust, but the deterministic one performs equally well and its computational time is drastically smaller

Contact Information

- Email: giulia.dellacroce@polito.it
- Email: enrico.bibbona@polito.it

 $I_t^2 | (I_{t-1}^2, Y_t^2) \sim \text{ShiftedHyperGeom} (I_{t-1}^2 + Y_t^2, I_{t-1}^{tot}, I_{t-1}^2, \rho_t^{tot})$