
Structure-preserving Approximate Bayesian Computation
for complex stochastic models
Massimiliano Tamborrino, Department of Statistics, University of Warwick.
massimiliano.tamborrino@warwick.ac.uk www.warwick.ac.uk/tamborrino

Considered neural recordings
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20s α-rhytmic EEG data, sampling rate 173.61 Hz, ∆ ≈ 5.76ms [1].
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200s recording of membrane voltage (simulated data)

Stochastic models and setting of interest

X : d-dimensional stochastic process depending on θ ∈ Θ ⊆ Rk,

dXt = F (Xt; θ)dt + Σ(Xt; θ)dWt, t ∈ [0, T ], θ ∈ Θ ⊆ Rp

X,F and W d-dimensional, Σ: d× d matrix. State space: D ⊆ Rd.

Model properties

• It exists an invariant distribution.

•X partially observed via Yθ = g(X), g : Rd→ Rm.

• The noise may not enter in all components (Σii may be 0).

1. Stochastic Harmonic Oscillator
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with λ2 − γ2 > 0 (weakly damped case), θ = (λ, γ, σ) and Yθ = Q.

2. Stochastic Jensen and Rit neural mass model
(JRNMM)
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with X0 = x0, C1 = C,C2 = 0.8C,C3 = C4 = 0.25C,
θ = (σ, µ, C) and Yθ = X2 −X3.

3. Stochastic FitzHugh-Nagumo (FHN)
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dWt, X0 = x0.

θ = (ε, γ, β, σ) and Yθ = V .

Simulation-based inference

Goal: Estimate θ based on the available partial observations Yθ.
Challenge: The underlying likelihood is intractable!

π(θ|y)︸ ︷︷ ︸
posterior

∝ π(y|θ)︸ ︷︷ ︸
likelihood

(intractable)

π(θ)︸︷︷︸
prior

⇒ Likelihood-free approaches, here simulation-based inference, in par-
ticular Approximate Bayesian Computation (ABC) [2].

Overview of different approaches to simulation-based inference from [3].
Key ingredients in simulation-based inference

1. Ability to simulate from the model (simulator).

2. Choice of the summary statistics.

Ability to simulate from the model

Conditionally on θ∗ from a proposal, we need to simulate a new realisation
yθ∗ from the model (simulator).
Challenge: Exact simulation schemes are rarely available for SDEs.

Invariant density of the JRNMM estimated from simulated data [4]

Invariant density of the FHN estimated from simulated data [5].

1st Take home message

• Be sceptic with Taylor schemes (e.g. Euler-Maruyama and Milstein).

• Use reliable (converngent AND property-preserving) numerical
schemes, here splitting schemes.

Numerical Splitting schemes in a nutshell

Consider X̃t ≈ Xt. How to simulate X̃ti given X̃ti−1?
Step 1: Split the SDE into explicitly solvable sub-equations.

F (Xt; θ) =

d∑
j=1

F [j](Xt; θ), Σ(Xt; θ) =

d∑
j=1

Σ[j](Xt; θ),

Step 2: Derive the explicit solutions of the sub-equations.

dXt = F [j](Xt; θ)dt + Σ[j](Xt; θ)dWt, j ∈ {1, . . . , d}.

Step 3: Compose the derived explicit solutions X
[j]
t = φ

[j]
t (x0)

(Strang approach)

X̃ti =
(
φ
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∆ ◦ φ
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∆/2

)
(X̃ti−1),

Choice of the summary statistics

How to account (and “remove!”) for the intrinsic stochasticity?

Two realisations of Yθ for the JRNMM with the same θ.
Proposal: Derive summaries based on the characterising model proper-
ties. Goal: map the data into something fully characterised by θ.

Estimated invariant density (left) and invariant spectral density (right)
for the data above.

2nd Take home message: Incorporate SDE dynamics and structural
properties to obtain summaries less sensitive to the intrinsic stochasticity
of the model.

Structure-preserving ABC[1]

Reference table acceptance-rejection ABC Algorithm
Input: Observed data y from Yθ.
Output: Samples from the posterior πεABC(θ|sy).

Choose a prior distribution π(θ) and a percentile p.
for i = 1 : N do

1. Draw θ∗ from the prior π(θ).

2. Conditionally on θ∗, simulate a new realisation yθi from the model
using the measure (property) preserving numerical splitting method.

3. Calculate the distance Di = IAE(Ŝy, Ŝy∗θ) +w · IAE(f̂y, f̂y∗θ), w ≥ 0.

end for
Compute ε as the percentage p of the calculated distances.
For i = 1, . . . , N , keep θi as a sample from the ABC posterior if Di < ε.

Key features: inefficient but parallelisable

⇒ π(θ|y)
?
= π(θ|sy) ≈ πεABC(θ|sy) = π( θ | d(sy, sy∗θ) < ε )

Stochastic harmonic oscillator with θ = λ

• πABC: ABC posterior obtained with exact simulation;

• πnum
ABC: ABC posterior obtained with Strang splitting scheme;

• πe
ABC: ABC posterior obtained with Euler-Maruyama scheme.

Stochastic JRNMM

Illustration on simulated data

ABC posteriors obtained with Euler-Maruyama scheme (top) vs splitting
scheme (bottom).

Illustration on real EEG data
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