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Abstract: A methodology based on Gaussian process (GP) emulators is proposed that offers a fast ap-
proximation to complex dynamical models. Our method relies on emulating the short-time numerical flow
map of the system, where the flow map is a function that returns the solution of a dynamical system at a
certain time point, given initial conditions. Here, the flow map is emulated via a GP whose kernel is approx-
imated with random Fourier features. This yields a random predictor whose realisations are approximations
to the flow map. In order to predict a given time series (i.e., the model output), a single realisation of the
approximate flow map is taken and used to iterate from the initial condition ahead in time. Repeating this
procedure with multiple realisations from the distribution of approximate flow maps creates a distribution
over the time series whose mean and variance serve as the model output prediction and the associated uncer-
tainty, respectively. The proposed method is applied to emulate several dynamic non-linear computer codes.
The results suggest that our approach has a high predictive performance and the associated uncertainty can
capture the dynamics of the system accurately.

1 Gaussian process emulators
Let f (x),x ∈ X , be the function we wish to emulate with the stochastic Gaussian process Y (x) given by

Y (x) = µ(x) + Z(x). (1)

Here, µ : X 7→ R is the trend function, and Z(x) is a centred (or zero mean) GP with the covariance function

Cov
(
Z(x), Z(x′)

)
= σ2k

(
x,x′

)
, ∀x,x′ ∈ X . (2)

The scalar σ2 is the process (signal) variance and controls the scale of the amplitude of Z(x). The correlation
function k : X × X 7→ R is a stationary (shift invariant) kernel: k(x,x′) = k(x − x′). One of the most
common stationary correlation functions is the squared exponential (SE) kernel defined as [4]

kSE(x,x′) = exp
(
−0.5

(
x− x′

)>
∆−2 (x− x′

))
, (3)

where the diagonal matrix ∆ ∈ Rd×d consists of the correlation length-scales denoted by δ1, . . . , δd.
Let D = {X,y} denote the training data set in which X = [x1, . . . ,xn]> is called the design matrix and

includes n points in the input space. The vector y = [f (x1), . . . , f (xn)]> comprises the outputs at those
locations. Typically, GPs are presented from a function space perspective where the predictive distribution
relies on the posterior Y (x) | D. However, GPs can be interpreted from a weight space perspective in which
Z(x) is expressed by [4]

Z(x) = φ(x)>w, φ(x) = [φ1(x), φ2(x), . . .]>, (4)

that is a weighted sum of (possibly infinite) basis functions. The vector w consists of the weights and
φ(x) : X 7→ H is called the feature map and transforms the input space into a reproducing kernel Hilbert
space (RKHS) H [3]. Given that all parameters in (1) are known, the predictive mean in the weight space
view takes the following form

f̃ (x) = µ(x) + φ(x)>Φ
(
Φ>Φ

)−1
(y − µ) , (5)

where µ = µ(X) and Φ =
[
φ(x1), . . . ,φ(xn)

]
is the aggregation of columns of φ(x) for all points in the

training set [4]. Equation (5) is obtained by assuming a Gaussian distribution over w and computing its
posterior [4]. The weight space representation of GPs is particularly advantageous for purposes of drawing
samples from their predictive mean. This is the driving idea behind the present work.

2 GP prediction with random Fourier features
Random Fourier features (RFF) offers an effective solution to approximate stationary kernels relying on
Bochner’s theorem [1]. According to this theorem, the Fourier transform of the stationary kernel k can be
written as

k(x,x′) =

∫
e−iω

>(x−x′)p(ω)dω = Ep(ϕ)

[
ϕ(x)>ϕ(x′)

]
. (6)

A possible choice for ϕ(·) is
ϕ(x) =

√
2 cos

(
ω>x + b

)
, (7)

in which b ∼ U [0, 2π] is a uniform random variable [3]. The distribution of ω depends on the type of correla-
tion function. For example, the spectral density of the SE kernel is Gaussian: ωSE ∼ N

(
0,∆−2

)
.

The explicit random feature map ϕ(x) defined by Equation (7) allows us to estimate the (actual) feature map
φ(x), which is possibly infinite dimensional. This can be performed using a Monte Carlo approach where we
generate M independently and identically distributed (i.i.d.) samples from p(ω) and p(b) = U [0, 2π] denoted
by ω(1), . . . ,ω(M) and b(1), . . . , b(M), respectively. Then, the approximated feature map φ̂(x) is achieved by

φ̂(x) =

√
2

M

[
cos
(
ω(1)>x + b(1)

)
, . . . , cos

(
ω(M)>x + b(M)

)]>
, (8)

which transforms an input vector x into the M -dimensional feature space. Finally, the stationary kernel k is
approximated as

k(x,x′) = Ep(ϕ)

[
ϕ(x)>ϕ(x′)

]
≈ φ̂(x)>φ̂(x′). (9)

The predictive mean of a GP whose kernel is approximated with RFF takes the following form

f̂ (x) = µ(x) + φ̂(x)>Φ̂
(
Φ̂
>

Φ̂
)−1

(y − µ) , (10)

wherein Φ̂ =
[
φ̂(x1), . . . , φ̂(xn)

]
is an M × n-dimensional matrix and estimates Φ. Since the construction

of φ̂(x) (see Equation (8)) relies on i.i.d. samples taken from the kernel spectral density p(ω) and p(b), the
predictive mean in (10) is stochastic and its s-th realisation is denoted by f̂ (s)(x). By repeating the Monte
Carlo sampling scheme, we can generate multiple such realisations. This idea is used to emulate dynamical
simulators where multiple draws from the approximate flow map are employed to perform one-step ahead pre-
dictions. With this, one can quantify uncertainty of the time series prediction in the absence of a closed-form
expression.

3 Emulating dynamical simulators

Let x(t1) = (x1(t1), . . . , xd(t1))> denote the solution of the system at t1 = t0 + ∆t for a given fixed “small”
time step ∆t and initial condition x0. We assume that x(t1) is produced by the flow map F defined as

F (x0) = (f1(x0), . . . , fd(x0))> = (x1(t1), . . . , xd(t1))> , (11)

such that each map fi : X 7→ R yields the i-th component of x(t1), i.e. xi(t1). A prediction associated with
the dynamics of xi(t) is achieved by:
• Emulating fi by a GP with RFF approximation, f̂i
•Drawing a realisation from f̂i denoted by f̂ (s)

•Using f̂ (s) iteratively to perform one-step ahead predictions
Following the above procedure renders only one prediction to the time series. However, we wish to have an

estimation of uncertainty associated with the prediction accuracy. This can be achieved by repeating the above
steps with different draws from the emulated flow map to reach a distribution over the time series. The mean
and variance of that distribution then serve as the model output prediction and the associated uncertainty,
respectively.

4 Numerical results

The prediction performance of our proposed method is tested on several dynamical systems implemented as
computer codes. They are the Lorenz, van der Pol [5], and Hindmarsh-Rose [2] models. The latter simulates
the dynamics of a single neuron. The results are shown in the figures below.
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Figure 1: The prediction (black) and associated uncertainty (shaded) in emulating the Lorenz model (red). The initial condition is
x0 = (1, 1, 1)> denoted by a red point in the three-dimensional picture. The vertical dashed blue lines represent the predictability
horizon which are the change point in the diagram of prediction uncertainties.
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Figure 2: The van der Pol oscillator (red), the prediction (black) and credible interval (shaded). The dashed blue lines show the
predictability horizon. The initial condition (red point) is x0 = (1, 1)>.

0 20 40 60 80 100

-2
-1

0
1

2

time (t)

x
1

0 20 40 60 80 100

-1
5

-1
0

-5
0

time (t)

x
2

0 20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

time (t)

x
3

x
1

x 2

x
3

Figure 3: The prediction (black) and associated uncertainty (shaded) in emulating the Hindmarsh-Rose model (red). The initial
condition is x0 = (1, 1, 1)>. The vertical dashed blue lines represent the predictability horizon which are the change point in the
diagram of prediction uncertainties.
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