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Introduction

The Fisher-KPP model is one of the simplest partial differential equation models exhibiting travelling wave behaviour, and it has been widely used to model the growth and spread of populations in biology. When
using the model to describe experimental data, it is often tempting to generalise the model with additional parameters to obtain a better fit. However, this increase in model complexity also increases the difficulty
in obtaining accurate estimates of the parameter values, which is important for making predictions in a wider range of scenarios.

In this study, we use a profile likelihood approach to investigate parameter identifiability of extensions of the Fisher-KPP model on both simulated data, and experimental data from a cell invasion assay. We show
that this approach allows us to determine which model is the most appropriate, which model best approximates the data, and the accuracy with which the parameter values in the model can be estimated. We also
explore ways to design experiments to yield data more useful for parameter identification.

Experimental data

The experimental data are obtained from a barrier assay with MDCK cells. The assay is done over a
period of 25 hours, with images taken once per 20 minutes. Initially, the cells are confined to a circular
region in the middle of the domain by a barrier, which is removed at t = 0. The images are analyzed
using convolutional neural networks [1] to obtain a density profile. Since the initial condition is radially
symmetric, we can reduce the data to one dimension by computing the radially-averaged cell density.

Figure 1. Left: Raw images of cells; Middle: Cell density profile in two dimensions; Right: Radially averaged cell density,
where x is distance away from the centre.

Profile likelihood

Let Cdata(x, t) be either the cell density obtained from in vitro experiments, or in silico data generated
by a known model with additive noise. Let Cmodel(x, t;θ) be the output from a proposed model for
describing the data, where θ = (θ1, . . . , θn) are the free parameters in the model. Let p denote prior or
posterior probability. The profile likelihood approach [2] is a compromise between maximum likelihood
and Bayesian approaches, in terms of computational cost, and the amount of information it provides.

Maximum likelihood:
θ∗ = max

θ
p(Cdata|θ).

Bayesian inference:
p(θ|Cdata) ∼ p(Cdata|θ)p(θ).

Profile likelihood:
p(θi = θ′i|Cdata) ∼ max

θ−i

p(Cdata|θ−i, θi = θ′i),

where θ−i denotes the parameters other than θi. The profile likelihood can be thought of as an
approximation to the univariate marginal posterior distribution of parameter values, therefore it allows
us to estimate confidence intervals in addition to the point estimates provided by maximum likelihood,
while being computationally cheaper than Bayesian inference.

We assume that the experimental data can be written as a sum of the solution of the model, and a
noise representing measurement error:

Cdata(xi, ti) = Cmodel(xi, ti;θ) +N (0, σ2).

The log-likelihood function for parameters θ is then

l(θ, σ) = log p(Cdata|θ, σ) = log
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where N = nxnt is the number of data points, and R(θ) =
∑

i,j(Cdata(xi, tj)− Cmodel(xi, tj))
2, the

squared residual. For each parameter θi, define the profile log-likelihood function
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where Rmin = min
θ−i

R(θ−i, θi = θ′i).

Therefore, computing the profile likelihood amounts to finding the best-fitting model for the data by
optimizing over all free parameters other than θi. The minimization of residual R is done using the
interior point algorithm implemented with Matlab’s fmincon.

The 95% confidence interval for parameter θi is the interval where li(θ
′
i) > −1.96. We say a parameter

can be better identified if the confidence interval is narrower.

Models

The model outputs Cmodel are generated by finite difference simulations of the following equation:

∂C

∂t
= ∇ · (D(C)∇C) + f (C), f (C) = rCα

[
1−

(
C

K

)γ]β
, D(C) = D0C

n, (1)

where C(x, t) is cell density, D(C) ≥ 0 is the diffusion coefficient, the function f (C) models net cell
proliferation, and K > 0 is the carrying capacity, and D0, r, α, β, γ > 0, n ≥ 0 are constant
parameters. The specific models we consider are:

Standard Fisher-KPP: free parameters D0, r, k, fixed α = β = γ = 1, n = 0;

Generalized porous Fisher: free parameters D0, r, n, k, fixed α = β = γ = 1;
(standard porous Fisher takes n = 1);

Richards growth: free parameters D0, r, γ, k, fixed α = β = 1, n = 0;

Generalized Fisher: free parameters D0, r, α, β, k, fixed γ = 1, n = 0;

Results

We present the profile log-likelihood functions, using the cell density from in vitro experiment as Cdata.

Figure 2. Profile likelihood function for each parameter under the four different
models. F - Standard Fisher-KPP; PF - Generalized porous Fisher; R - Richards
growth; GF - Generalized Fisher. The estimated confidence interval for each
parameter is bounded by the points where the log-likelihood curve (blue) intersect
with the constant line at −1.96.

Model AIC BIC
F 213821.313 213842.706
PF 213821.064 213849.589
R 213531.509 213560.034
GF 213595.768 213631.425

Table 1. AIC and BIC of the
maximum likelihood parameter
estimator for each model, with the
same set of experimental data.

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are widely used as
guides to model selection. They are defined as:

AIC = −2l(θ∗, σ∗) + 2m,

BIC = −2l(θ∗, σ∗) + log(N)m,

where θ∗, σ∗ are the maximum likelihood estimates, N the number of data points, and m the number
of free parameters. Both criteria seek to find a maximum likelihood estimator while penalising the
model for having more free parameters to avoid over-fitting. A lower score indicates a better model.
Our main findings are:

increasing the number of free parameters in general widens the confidence interval of each of the
parameters, thus reducing parameter identifiability;

decreasing the amount of data points available (eg. by down-sampling the data) reduces parameter
identifiability;

the peak and the confidence intervals of the parameters shared by all models, (D0, r,K), differ
depending on model.

Discussions

The profile likelihood method provides a computationally efficient way to explore parameter
identifiability

In the context of cell invasion, where a number of models are capable of replicating the qualitative
behaviour and are practically identifiable, the use of information criterion can be used to select a
model

Out of the four specific models we considered, the Richards growth model has the lowest AIC and
BIC scores, therefore it is considered a better fit to data after penalising for over-fitting. However, its
parameters are less identifiable compared to other models with a similar number of free parameters.

Our results highlight that parameter interpretations and estimates are model dependent, therefore
we must be cautious when taking parameter values estimates from one model and using them in
related models.
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