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INTRODUCTION
• Mathematical modelling and simulation can be used to provide 
clinically relevant predictions of response to cancer therapy. 
However, the complexity and heterogeneity of cancer make it 
difficult to create and parameterise mechanistic models that 
allow for precise patient-specific predictions and treatment 
protocol optimisation.

• More detailed and realistic multi-scale cancer models can 
integrate multi-type clinical data1, but are difficult to personalize 
both because the necessary measurements are sometimes not 
accessible and because analytical inference based on the 
likelihood on such complex models is impossible.

• We focus on a complex multi-scale hybrid cellular automaton 
model of breast cancer treated by a combination of 
chemotherapy and anti-angiogenic agents1. Several dependent 
processes, such as cell dynamics, the blood vessel birth and 
death process, and the processes governing concentrations of 
oxygen, VEGF and drugs in the tissue are only partially 
observable. 

• We investigate if some of those key parameters that have a big 
impact on the treatment outcome can be estimated from a series 
of measurements of cell density in the tumour tissue using 
Bayesian optimization for likelihood-free inference (BOLFI)2, as 
well as how often the measurements need to be taken. 

• This work outlines the measures that should be done in clinical 
practise to ensure that enough patient data is accessible to run 
reliable tailored therapy simulations. 

METHODS
The system is partly initialised and tuned based on a biopsy from 
a real patient, but we use only simulated data to demonstrate the 
inference and prediction procedure.

The model consists of a hybrid cellular automaton model that 
couples stochastic and discrete model formalisms with 
deterministic and continuous components accounting for 
biological processes at different spatio-temporal scales (Fig. 1)

we focus on the inference of three key parameters determining 
the outcome of each patient to the drug treatment: chemo-
sensitivity of cancer cells, α, minimal cell cycle length of cancer 
cells Tc  and birth probability of vessels based on the evolution of 
state xt.

                            xt = ft(α, Tc, pbirth, xt−1, vt), t = 0, 2, . . . , T

where ft(.) is the nonlinear transition model at t, and vt is the 
stochastic component of the simulator.

xt consists of cells, vessels, and extracellular concentration of 
oxygen and VEGF within the simulation grid. Simulated data were 
generated using a set of fixed parameter values and assumed to 
be collected every three days, t = 0, 3, 6, 9.

Prior distributions for the unknown parameters were modelled as 
uniform distribution. Summary statistics were cancer cell and 
vessel densities, and VEGF distribution. The results are 
approximations to the posterior distribution of the parameters 
p(α, Tc, pbirth| yt0 , . . . yt3 )

Fig. 1 Model summary of the simulator.  The diagram shows the main
components of each module and the interactions among them. The right 
column shows the different model formalisms used for each of the model 
modules.  

RESULTS
Simulation scenario 1

Fig 2. Approximated posterior 
distributions of the posterior 
marginals. The red vertical lines on 
the first two subplots indicate the 
true simulation values which were 
used for simulating the cancer cell 
growth trajectory

Fig 3. Simulated 
trajectories of the 
evolution of cancer 
cell proportions in 
the simulation grid 
given the true 
parameter values, 
and the forecast of 
the trajectory as 
simulated given the 
posterior distribu-
tion of the para-
meter values. The 
simulation end 
point is highlighted 
as the histogram 
on the right

Simulation scenario 2

Fig 4. 
Approximated 
posterior 
distributions of 
the posterior 
marginals. The 
red vertical 
lines indicate 
true simulation 
values which 
were used for 
simulating the 
cancer cell 
growth 
trajectory

CONCLUSION
• Our results were based on simulated data as real-patient data are only available at the start 
and the end of a therapy.
• From the simulated complete 12-week therapy history of two distinct patients, we can extract 
data at different interval to simulate various data collection intensities.
• For each collection intensity, we can test if we were able to estimate the personal parameters 
of the patient well enough and make good prediction of outcomes after therapy. 
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