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Stochastic simulation models
Stochastic mechanistic models are used widely in scientific and commercial domains, ranging from
biology to economics to cybersecurity. Such models often take the form of a simulation model: a
computer program that consumes parameters θ ∈ Rd and generates possible instances of datasets x,
which can be viewed as a draw from the simulator’s likelihood function, i.e. as x ∼ p(x | θ).

Figure 1 – A stochastic simulator consumes Euclidean parameters θ and generates are random output x.

Stochastic simulation models are helpful for flexibly capturing causal mechanisms.

Approximate inference for stochastic simulation models
Once a stochastic simulator is constructed, it is often the case that its behaviour varies with changes
in the parameter values. Furthermore, one is in many cases interested in finding parameter values that
result in simulations that match reality closely. This is an inference problem that can be approached
using classical statistical methods, e.g. Bayesian inference:

Figure 2 – Bayesian inference provides a means
to updating degrees of belief regarding appropriate
parameter values by incorporating both prior
knowledge and new evidence.

However, likelihood-based inference techniques
often cannot be applied immediately: evaluating
the likelihood function for arbitrary simulators
is generally an intractable computational task.

Approximate inference via density ratio estimation
Approximate, simulation-based inference techniques that mimic likelihood-based procedures are

often used when the likelihood function is unavailable. One option is density ratio estimation.

Density ratio estimation can be used to learn the likelihood-to-evidence ratio appearing in Bayes’s
theorem [1]. This can be achieved by training a probabilistic classifier to distinguish between instances
drawn from two collections of data-parameter pairs:

Figure 3 – The data-parameter pairs on the left are drawn from the joint density, such that the parameter
“generated” the data to which it is paired. In contrast, the pairs on the right are drawn from the product of
the marginals, such that there exists no relationship between each data instance and its parameter partner.

The likelihood-to-evidence ratio can be recovered from the logit of the following class probability
estimate learned by the classifier:

Figure 4 – The classifier learns an estimate of the class-1 probability, which can be used to estimate the
posterior.

Summary statistics in density ratio estimation
To facilitate the learning task when the data y is a time-series, it is often practically necessary to

find low-dimensional summary statistics for the data.

Figure 5 – The high-dimensional time-series data must often be summarised to facilitate learning. Good
summary statistics are often unknown and must be learned from data.

Learning good low-dimensional representations of high-dimensional time-series can be difficult
when the simulator is expensive and the simulation budget is severely constrained.

Signatured density ratio estimation: SignatuRE
To bypass the task of learning summary statistics for time-series data – which can be difficult in
low-simulation budget settings – we propose to use the path signature and corresponding signature
kernel to construct probabilistic classifiers for time-series simulators [2]. Kernel methods are known
to offer benefits in data-sparse scenarios, where deep learning-based approaches cannot be so readily
deployed; applied in conjunction with signature features, this provides us with an alternative to neural
probabilistic classifiers that is designed with low-simulation budget environments in mind.

The key idea is to use kernel logistic regression, along with the signature kernel k, on
data-parameter pairs to perform the probabilistic binary classification task. Choosing kernel

m ((x,θ), (x′,θ′)) = k(x, x′)l(θ,θ′), (1)

where l is some universal kernel on parameters, we are equipped with a universal kernel that can
approximate the desired logit arbitrarily well over compact sets of data-parameter pairs.

Figure 6 – A schematic showing how the signature kernel embeds the time-series.

Experimental results
To investigate the usefulness of our proposed solution, we compared its ability to recover
ground-truth posteriors for a variety of simulators against three baseline alternatives:

a) GRU-ResNet – a neural classifier in which a GRU is used to embed the time-series before
feeding the time-series embedding, in addition to the parameters, into a residual network

b) Bespoke ResNet – identical to the above, except that the time-series is cast into hand-crafted
summary statistics that are known to be informative about the parameters being inferred. This
is an idealised, gold-standard approach that is in general not possible for arbitrary simulators

c) K2-RE – an alternate kernel-based classifier in which the signature kernel k is replaced with the
double MMD-based kernel described in Park et al. [3]. This acts as an ablation study, helping to
isolate the effect of the signature kernel

We compare these methods on three inference tasks for three simulators: an Ornstein-Uhlenbeck process
(results in Figure 7); a moving average model of order 2 (results in Figure 8); and a partially observed
stochastic epidemic model generating multivariate time-series (results shown in Table 2).

Figure 7 – Experimental results for the
Ornstein-Uhlenbeck process.

Figure 8 – Experimental results for the moving
average model of order 2.

Method Simulation budget
50 100 200 500 1000

GRU-ResNet 0.434 0.425 0.355 0.273 0.090
K2-RE 0.417 0.432 0.407 0.454 0.431

K2-RE-5 0.440 0.427 0.374 0.206 0.255
SignatuRE 0.430 0.411 0.351 0.513 0.321

SignatuRE-5 0.241 0.333 0.176 0.133 0.083
Bespoke ResNet 0.379 0.222 0.146 0.104 0.092

Table 2 – Median Wasserstein distance from SMC-ABC [4] posterior for the partially-observed epidemic
model (from 10 seeds). Smaller values are better. Bold and italics indicate best and second-best,
respectively, of the methods that do not use pre-defined summary statistics.

From these experiments, we see that SignatuRE can outperform even sophisticated neural
architectures when the simulation budget is extremely constrained. Such an approach may

therefore be useful for very expensive simulators.
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