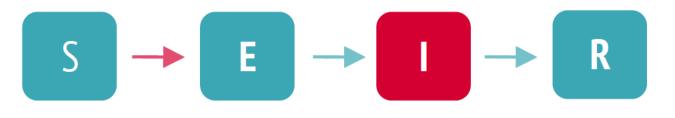
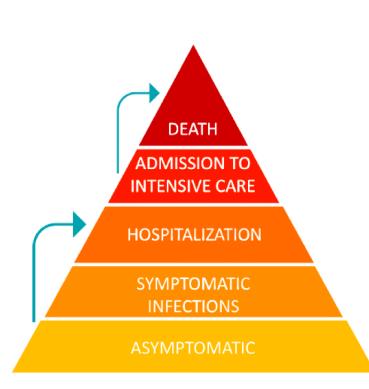
Inferring epidemics from multiple dependent data via pseudo-marginal methods

A Corbella, AM Presanis, PJ Birdell, and D De Angelis Bayes4Health IIIT-1IIIT-1IIIT-1II

Introduction: processes in epidemics

Multiple processes **jointly** contribute to generate epidemic data



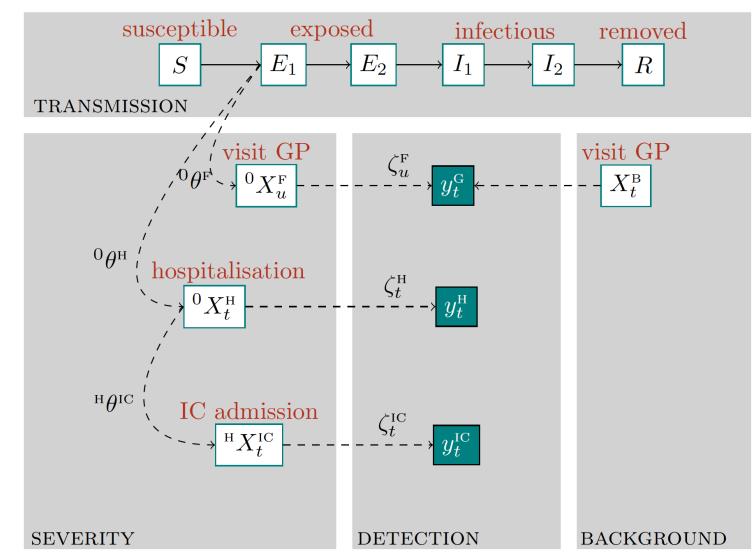


Transmission dynamics in the population Severity process for disease progression Other sources of randomness

A model for the 2017/18 Flu epidemic

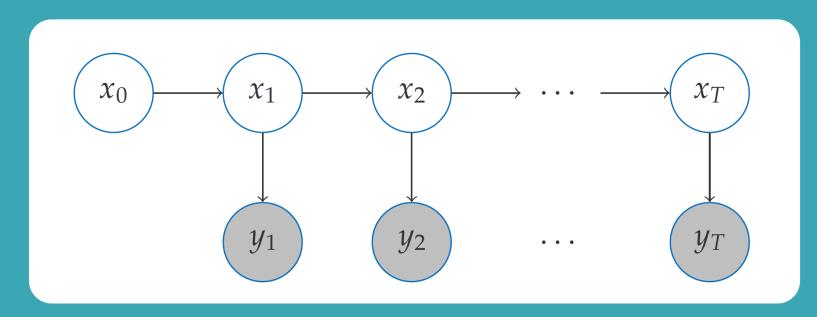
Fuse data on

- weekly hospital and intensive care (IC) admissions
- daily GP consultations
 virology and serology
 We assume a deterministic
 transmission model with
 stochastic severity as (1)
 background non flu ILI cases:



Which and how much **stochasticity** should we introduce?

SSMs and Pseudo-Marginal methods



State Process $X_0|\theta \sim p(x_0|\theta)$ $X_t|(X_{t-1},\theta) \sim p(x_t|x_{t-1},\theta)$ Observation process $Y_t|(X_t,\theta) \sim p(y_t|x_t,\theta)$

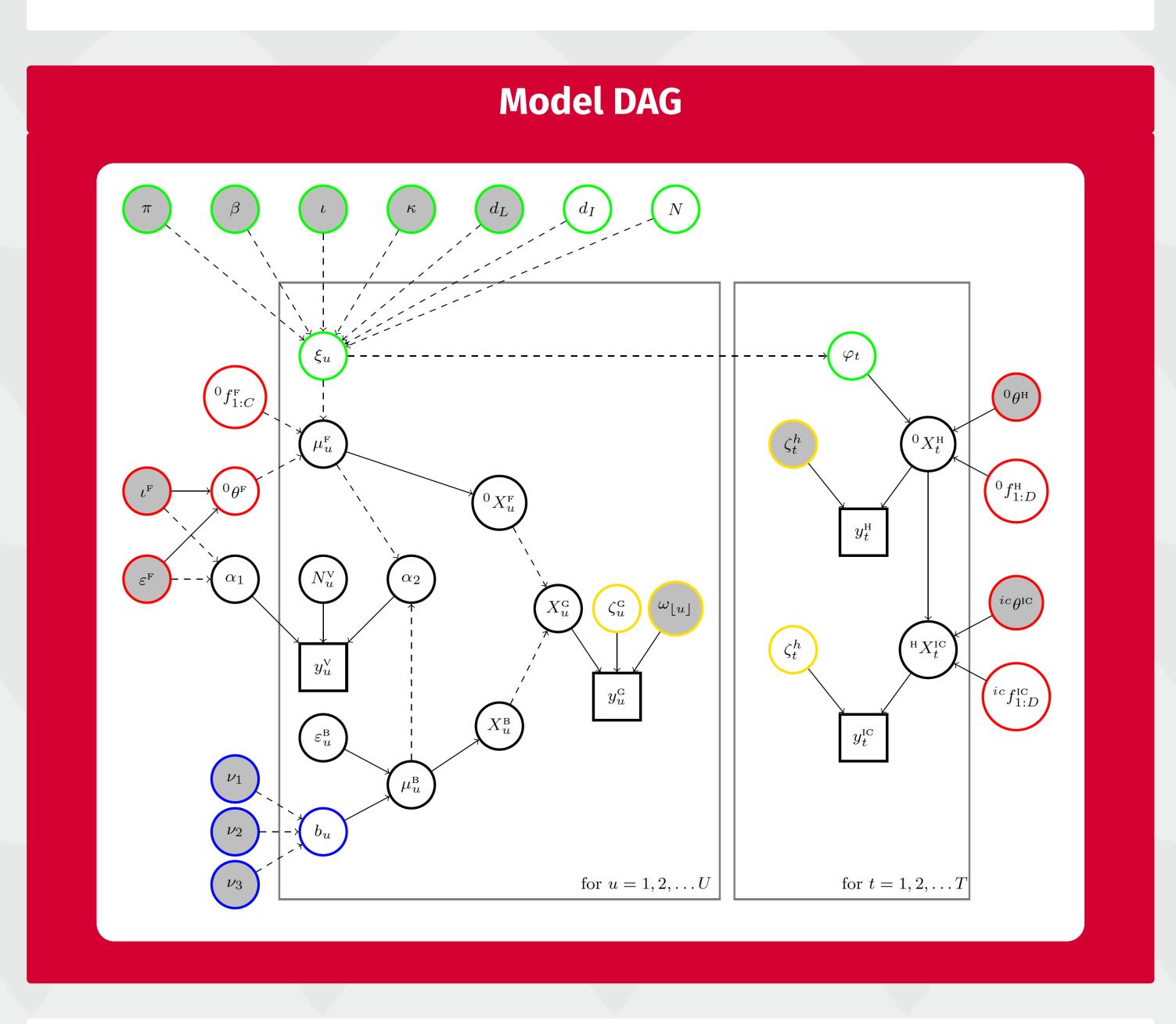
The likelihood can be computed **sequentially** $p(y_{1:T}|\theta) = \prod_{t=1}^{T} p(y_t|y_{1:t-1}, \theta) = \prod_{t=1}^{T} \int_{X_{0:t}} p(y_t, x_{0:t}|y_{1:t-1}, \theta) \, \mathrm{d}x_{0:t}$ **Pseudo-Marginal** methods consists of using a MC approximation of the likelihood $\hat{p}(y_{1:T}|\theta)$ within an MCMC routine.

Multiple data on epidemic

For large epidemics/pandemics a **semi-stochastic model** with

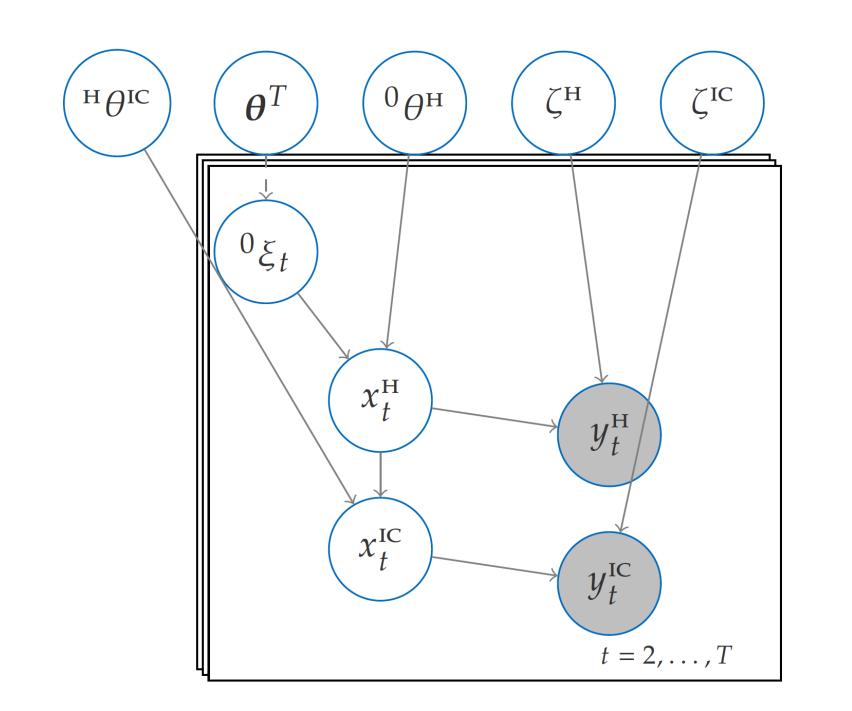
- $\left(X_{u}^{\mathsf{B}}\Big|\mu_{u}^{\mathsf{B}}\right)\sim \mathsf{Pois}\left(\mu_{u}^{\mathsf{B}}\right)$, with μ_{u}^{B} r.v. centred in $b_{u}=e^{\left\{\nu_{1}+\nu_{2}\cos\left(rac{2\pi t_{u}}{5^{2}}
 ight)+\nu_{3}\sin\left(rac{2\pi t_{u}}{5^{2}}
 ight)
 ight\}}$
- Accounts for discrete delay between events
- Day-of-the-week effect on the detection parameter $\omega_{|\pmb{u}|}$
- Virology data distribution

$$\left[\mathbf{Y}_{\boldsymbol{u}}^{\vee}\middle|\mathbf{N}_{\boldsymbol{u}}^{\vee},\mu_{\boldsymbol{u}}^{\mathsf{F}},\mu_{\boldsymbol{u}}^{\mathsf{B}}
ight)\sim\mathsf{Binom}\left(\mathbf{N}_{\boldsymbol{u}}^{\vee},rac{\mu_{\boldsymbol{u}}^{\mathsf{F}}}{\mu_{\boldsymbol{u}}^{\mathsf{F}}+\mu_{\boldsymbol{u}}^{\mathsf{B}}}
ight)$$



deterministic transmission and stochastic severity is realistic $\binom{0}{t}X^{H} \sim Pois(^{0}\xi \cdot ^{0}\theta^{H})$

 $\begin{pmatrix} {}^{O}_{t}X^{H}_{t:t+D} | {}^{O}_{t}X^{H} = {}^{O}_{t}x^{H} \end{pmatrix} \sim \text{Multi}({}^{O}_{t}x^{H}, {}^{O}_{f}{}^{H}_{O:D}), \qquad X^{H}_{t} = \sum_{s=0}^{S} {}_{t-s}{}^{O}X^{H}_{t}$ $\begin{pmatrix} {}^{H}_{t}X^{\text{IC}} | X^{H}_{t} = x^{H}_{t} \end{pmatrix} \sim \text{Bin}(x^{H}_{t}, {}^{H}\theta^{\text{IC}})$ $\begin{pmatrix} {}^{H}_{t}X^{\text{IC}} | X^{H}_{t} = x^{H}_{t} \end{pmatrix} \sim \text{Multi}({}^{H}_{t}x^{\text{IC}}, {}^{H}_{f}f^{\text{IC}}_{O:D}), \qquad X^{\text{IC}}_{t} = \sum_{s=0}^{S} {}_{t-s}{}^{H}X^{\text{IC}}_{t}$ $\begin{pmatrix} Y^{H}_{t} | X^{H}_{t} = x^{H}_{t} \end{pmatrix} \sim \text{Bin}(x^{H}_{t}, \zeta^{H}_{t})$ $\begin{pmatrix} Y^{\text{IC}}_{t} | X^{\text{IC}}_{t} = x^{\text{IC}}_{t} \end{pmatrix} \sim \text{Bin}(x^{\text{IC}}_{t}, \zeta^{\text{IC}}_{t})$



Even if the temporal dependence is broken there is still **dependence in the severity states** so that:

(1)

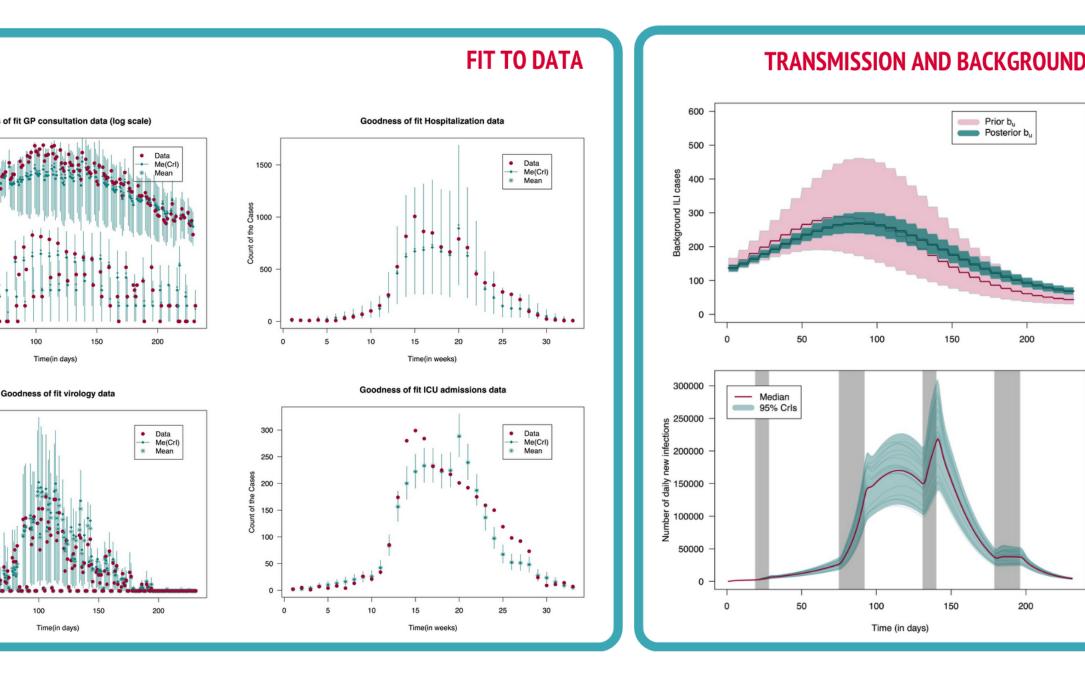
 $p(y_{1:T}^{ op}, y_{1:T}^{ op}|oldsymbol{ heta})
eq p(y_{1:T}^{ op}|oldsymbol{ heta}) p(y_{1:T}^{ op}|oldsymbol{ heta})$

The joint likelihood factorises as:

 $p(y_{1:T}^{\mathsf{H}}, y_{1:T}^{\mathsf{IC}}|\theta) = p(y_{1:T}^{\mathsf{H}}|y_{1:T}^{\mathsf{IC}}, \theta)p(y_{1:T}^{\mathsf{IC}}|\theta)$ $= p(y_{1:T}^{\mathsf{IC}}|y_{1:T}^{\mathsf{H}}, \theta)p(y_{1:T}^{\mathsf{H}}|\theta)$

where one of the two components can be **approximated via MC integration** and embedded in a

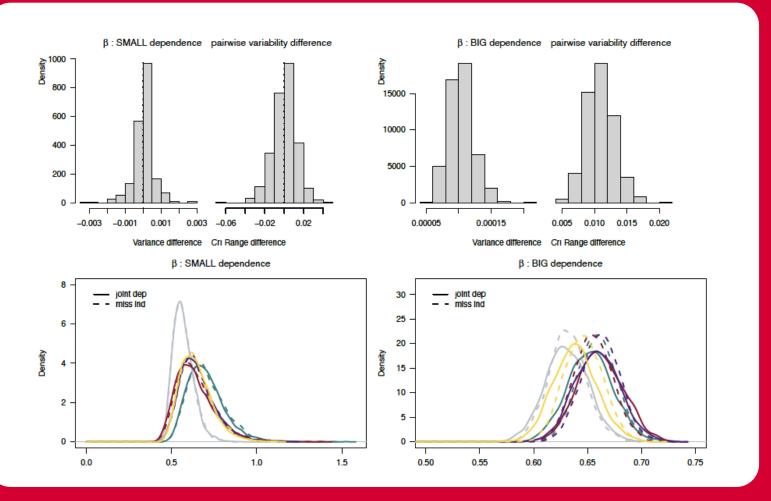
Results



Pseudo-Marginal routine.

Relevance of the dependence

Simulation study in a
small dependence scenario
big dependence scenario
Compare the inference obtained with algorithms that assume
Misspecified independent VS
Joint dependent data



Main Findings and Discussion

Findings

general set up for epidemic inference as SSMs
inferential tool for dependent data
showed that it is key to account for

dependence

• application to multiple dependent data on flu in 2017/18

What next?

- Improve the exploration of the parameter space with more efficient MCMCs
- Test the methods on models for prediction

Reference

Corbella A, Birrell PJ, Presanis AM and De Angelis D, **Inferring Epidemics from Multiple Dependent Data via Pseudo-Marginal Methods**. Submitted to *The Annals of Applied Statistics*.

