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Fig.1. The circadian clock for
Arabidopsis thaliana [5].

After ranking the optimized LCs by score, we then
assessed whether the top-ranking LCs comprised
viable clock circuits by checking that they were capable
of (i) generating self-sustained oscillations with a circa-
dian period in constant conditions and (ii) entraining to
LD cycles over a realistic range of photoperiods [55].

For the Neurospora and 2-loop Arabidopsis logic
models, the full set of LCs was fitted to synthetic
data. The best-performing LCs for these networks are
shown in figures 4 and 5a. It can be seen that the optim-
ization method produces a clear separation of the LCs
by score. Moreover, for each network, one of the DE
LCs is uniquely identified as the optimal circuit yielding
a viable clock. In the case of 3-loop Arabidopsis, we con-
sidered the subset of configurations obtained by setting
the gates common with the 2-loop Arabidopsis circuit to
their optimized values. This mirrored the construction
of the 3-loop DE model which was derived from the
2-loop system by adding an additional feedback loop
while fixing all other interactions, and then optimizing
the parameters of the new loop [36]. Constraining the
structure of the circuit in this fashion yielded eight poss-
ible LCs (the two edges in the LHY–PRR loop
described as activation or inhibition and the AND/
OR interaction at LHY; figure 2d). Figure 5b shows
that in this system, as for the other models, a DE LC
emerges as the optimal circuit.

2.3. Optimal Boolean models have biological
time-series characteristics

The time series generated by the optimal configurations
in LD cycles are shown in figure 6. The corresponding
DE simulations are also plotted for comparison.

In each case, it is clear that the Boolean models capture
the same qualitative dynamics as their DE counterparts.
Different species are switched on and off relative to one
another with phases that match the patterns of rising
and falling expression in the corresponding continuous
time series. Moreover, the delays between the switching

times are similar to the phase differences between the
peaks and troughs of the DE solutions.

It should be noted that both Boolean Arabidopsis
models reproduce the acute light response in the Y
gene, as well as the circadian response in Y around
dusk (cf. figure 6e–h). This demonstrates the ability
of the Boolean circuits to simulate biochemical pro-
cesses that occur on different time scales within the
same system.

The optimal LCs give equally good matches to the DE
dynamics in simulated free-running conditions, as can be
seen in the electronic supplementary material, figure S3.

2.4. Optimal Boolean models have biological
photoperiodic behaviour

In order to assess the extent to which the Boolean
models reproduce the DE dynamics in a more global
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Figure 3. The number of parameters required for each
clock configuration as DE models (white bars) and logic
models (black bars).
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Figure 4. The results of exploring the logic configurations (LCs)
belonging to the abstract topologies of the (a) 1-loop and (b) 2-
loop Neurospora models. Cost scores are shown for the optimal
fit of each LC to synthetic data. The LCs are indexed by their
decimal representations for brevity (see §4 for details). Here, a
score of 0 indicates the best fit and a score of 1 the worst fit. Tri-
angles indicate LCs for which the Boolean model yields a viable
clock. LCs mirroring the activation and inhibition pattern of the
corresponding DE models in figure 1a,b are plotted in red. In (a),
one such LC mirrors the corresponding DE model, G ¼ (01), and
this emerges as the optimal configuration yielding a viable clock.
In (b), only LCs yielding scores less than 0.75 are shown. There
are two that mirror the equivalent DE model. One of these,
G ¼ (00111), is identified as the optimal configuration giving a
viable clock (leftmost red triangle). In this LC, either of the
FRQ isoforms can independently inhibit transcription (the
corresponding two-input gate is of the AND type).
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Fig. 2. The number of parameters required
for ODE (white) and BDE (black) models of
different circadian networks [2].

Fitting BDEs to data
In fitting Boolean variables xi(t) to continuous data Di(t), it is 
necessary to introduce discretisation thresholds Ti [2,4]. The 
goodness-of-fit of a BDE model for a given combination of delays 
and discretisation thresholds is then quantified by the cost function
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that computes the Hamming distance between the predictions x̂i(t;𝜏) 
and discretised data Di(t;Ti) for each model variable. This natural 
costing method contrasts with ODEs, for which there are number of 
possible cost functions (e.g. least squares), each of which defines a 
different optimisation problem [4]. Moreover, it avoids the arbitrary 
cost terms that are often necessary in continuous models to capture 
qualitative features of the target dynamics [8].

Fig 3. shows solutions of the Arabidopsis BDE model (1) obtained 
by fitting to time series data generated from the equivalent ODE 
model. Optimal values of the signalling delays and discretisation
thresholds were determined by minimising the cost function (2) 
using the evolutionary algorithm CMA-ES [9]. Note that the patterns 
of rising and falling gene expression of the BDE model match those 
of the ODE equivalent. In addition, the BDEs reproduce the 
relaxation-type oscillation in LHY. 

0 4 8 12 16 20 24 28 32 36 40 44
0

0.5

1

1.5

Time (h)

N
o

rm
a

lis
e

d
 e

xp
re

ss
io

n

A

 

 

FRQ FRQ

0 4 8 12 16 20 24 28 32 36 40 44
0

0.5

1

Time (h)

E
xp

re
ss

io
n

 (
0

/1
)

B

 

 

FRQ FRQ

0 4 8 12 16 20 24 28 32 36 40 44
0

0.5

1

1.5

C

Time (h)
N

o
rm

a
lis

e
d

 e
xp

re
ss

io
n

 

 

FRQ
FRQ

1
FRQ

2

0 4 8 12 16 20 24 28 32 36 40 44
0

0.5

1

Time (h)

E
xp

re
ss

io
n

 (
0

/1
)

D

 

 

FRQ
FRQ

1
FRQ

2

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2
E

Time (h)

N
o

rm
a

lis
e

d
 e

xp
re

ss
io

n

 

 

LHY TOC1 X Y

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

F

Time (h)

E
xp

re
ss

io
n

 (
0

/1
)

 

 

LHY TOC1 X Y

0 4 8 12 16 20 24 28 32 36 40 44 48
0

0.5

1

1.5

2

Time (h)

N
o

rm
a

lis
e

d
 e

xp
re

ss
io

n

G

 

 

LHY TOC1 X Y PRR

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Time (h)

E
xp

re
ss

io
n

 (
0

/1
)

H

 

 

LHY TOC1 X Y PRR

Figure S3: Time series for the di↵erential equation (DE) and Boolean versions of the clock models

in constant conditions. Two periods of each are plotted for comparison. A, B: 1-loop Neurospora;

C, D: 2-loop Neurospora; E, F: 2-loop Arabidopsis ; G, H: 3-loop Arabidopsis. DE time series (left

panels) have been normalised to lie between 0 and 1 in order to facilitate comparison with the

Boolean simulations (right panels). Di↵erent components within a model are slightly o↵set from

one another so they can be distinguished more easily. The time step used for solving the Boolean

models was 0.5h, equal to the data sampling interval.
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Figure S3: Time series for the di↵erential equation (DE) and Boolean versions of the clock models

in constant conditions. Two periods of each are plotted for comparison. A, B: 1-loop Neurospora;

C, D: 2-loop Neurospora; E, F: 2-loop Arabidopsis ; G, H: 3-loop Arabidopsis. DE time series (left

panels) have been normalised to lie between 0 and 1 in order to facilitate comparison with the

Boolean simulations (right panels). Di↵erent components within a model are slightly o↵set from

one another so they can be distinguished more easily. The time step used for solving the Boolean

models was 0.5h, equal to the data sampling interval.
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causing a transition from a predominately dusk-locked
system to a dawn-locked one [57]. In particular, the
Boolean 2-loop Arabidopsis circuit exactly reproduces
the dual light response in the Y gene, in which the
acute peak tracks dawn, and the circadian peak tracks
dusk. This suggests that the logic circuits possess suffi-
cient dynamic flexibility to perform the complex
integration of environmental signals that is a central
property of circadian systems.

2.5. Boolean models can determine circadian
network structure from experimental data

The success of the logic models in recovering the
correct DE configurations from synthetic data suggested
that for a fixed abstract topology, our optimization pro-
cedure has the capacity to determine the logic network
most consistent with a given dataset. We tested this

finding further by optimizing the 3-loop Arabidopsis
logic circuit to highly sampled experimental time series
recorded using luciferase (LUC) imaging in constant
light from a wild-type strain [57]. All possible LCs were
considered, corresponding to a network inference carried
out assuming no prior biological knowledge. The cost
function optimized was the same as that used for fitting
to synthetic LL data. As previously, viable clock circuits
were taken to be those yielding autonomous limit cycles
with circadian periods.

The results of fitting to experimental data are pre-
sented in figure 8a. It can be seen that the second
highest-ranking LC giving a viable circuit is a DE con-
figuration. This configuration, GDE, is in fact the same
as that previously determined to be optimal from the
synthetic Arabidopsis datasets. Moreover, figure 8b
shows that GDE emerges as the top-ranking clock con-
figuration if the regulatory structure is constrained to
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Figure 6. Time series for the differential equation and Boolean versions of the clock models in 12:12 LD cycles. Two 24-h cycles
are plotted for each model. (a,b) 1-loop Neurospora; (c,d) 2-loop Neurospora; (e,f ) 2-loop Arabidopsis; (g,h) 3-loop Arabidopsis.
Differential equation time series (left panels) have been normalized to lie between 0 and 1 in order to facilitate comparison with
the Boolean simulations (right panels). Different components within a model are slightly offset from one another so they can be
distinguished more easily. The time step used for solving the Boolean models was 0.5 h, equal to the data sampling interval.
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causing a transition from a predominately dusk-locked
system to a dawn-locked one [57]. In particular, the
Boolean 2-loop Arabidopsis circuit exactly reproduces
the dual light response in the Y gene, in which the
acute peak tracks dawn, and the circadian peak tracks
dusk. This suggests that the logic circuits possess suffi-
cient dynamic flexibility to perform the complex
integration of environmental signals that is a central
property of circadian systems.

2.5. Boolean models can determine circadian
network structure from experimental data

The success of the logic models in recovering the
correct DE configurations from synthetic data suggested
that for a fixed abstract topology, our optimization pro-
cedure has the capacity to determine the logic network
most consistent with a given dataset. We tested this

finding further by optimizing the 3-loop Arabidopsis
logic circuit to highly sampled experimental time series
recorded using luciferase (LUC) imaging in constant
light from a wild-type strain [57]. All possible LCs were
considered, corresponding to a network inference carried
out assuming no prior biological knowledge. The cost
function optimized was the same as that used for fitting
to synthetic LL data. As previously, viable clock circuits
were taken to be those yielding autonomous limit cycles
with circadian periods.

The results of fitting to experimental data are pre-
sented in figure 8a. It can be seen that the second
highest-ranking LC giving a viable circuit is a DE con-
figuration. This configuration, GDE, is in fact the same
as that previously determined to be optimal from the
synthetic Arabidopsis datasets. Moreover, figure 8b
shows that GDE emerges as the top-ranking clock con-
figuration if the regulatory structure is constrained to
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Figure 6. Time series for the differential equation and Boolean versions of the clock models in 12:12 LD cycles. Two 24-h cycles
are plotted for each model. (a,b) 1-loop Neurospora; (c,d) 2-loop Neurospora; (e,f ) 2-loop Arabidopsis; (g,h) 3-loop Arabidopsis.
Differential equation time series (left panels) have been normalized to lie between 0 and 1 in order to facilitate comparison with
the Boolean simulations (right panels). Different components within a model are slightly offset from one another so they can be
distinguished more easily. The time step used for solving the Boolean models was 0.5 h, equal to the data sampling interval.
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causing a transition from a predominately dusk-locked
system to a dawn-locked one [57]. In particular, the
Boolean 2-loop Arabidopsis circuit exactly reproduces
the dual light response in the Y gene, in which the
acute peak tracks dawn, and the circadian peak tracks
dusk. This suggests that the logic circuits possess suffi-
cient dynamic flexibility to perform the complex
integration of environmental signals that is a central
property of circadian systems.

2.5. Boolean models can determine circadian
network structure from experimental data

The success of the logic models in recovering the
correct DE configurations from synthetic data suggested
that for a fixed abstract topology, our optimization pro-
cedure has the capacity to determine the logic network
most consistent with a given dataset. We tested this

finding further by optimizing the 3-loop Arabidopsis
logic circuit to highly sampled experimental time series
recorded using luciferase (LUC) imaging in constant
light from a wild-type strain [57]. All possible LCs were
considered, corresponding to a network inference carried
out assuming no prior biological knowledge. The cost
function optimized was the same as that used for fitting
to synthetic LL data. As previously, viable clock circuits
were taken to be those yielding autonomous limit cycles
with circadian periods.

The results of fitting to experimental data are pre-
sented in figure 8a. It can be seen that the second
highest-ranking LC giving a viable circuit is a DE con-
figuration. This configuration, GDE, is in fact the same
as that previously determined to be optimal from the
synthetic Arabidopsis datasets. Moreover, figure 8b
shows that GDE emerges as the top-ranking clock con-
figuration if the regulatory structure is constrained to
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Figure 6. Time series for the differential equation and Boolean versions of the clock models in 12:12 LD cycles. Two 24-h cycles
are plotted for each model. (a,b) 1-loop Neurospora; (c,d) 2-loop Neurospora; (e,f ) 2-loop Arabidopsis; (g,h) 3-loop Arabidopsis.
Differential equation time series (left panels) have been normalized to lie between 0 and 1 in order to facilitate comparison with
the Boolean simulations (right panels). Different components within a model are slightly offset from one another so they can be
distinguished more easily. The time step used for solving the Boolean models was 0.5 h, equal to the data sampling interval.
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causing a transition from a predominately dusk-locked
system to a dawn-locked one [57]. In particular, the
Boolean 2-loop Arabidopsis circuit exactly reproduces
the dual light response in the Y gene, in which the
acute peak tracks dawn, and the circadian peak tracks
dusk. This suggests that the logic circuits possess suffi-
cient dynamic flexibility to perform the complex
integration of environmental signals that is a central
property of circadian systems.

2.5. Boolean models can determine circadian
network structure from experimental data

The success of the logic models in recovering the
correct DE configurations from synthetic data suggested
that for a fixed abstract topology, our optimization pro-
cedure has the capacity to determine the logic network
most consistent with a given dataset. We tested this

finding further by optimizing the 3-loop Arabidopsis
logic circuit to highly sampled experimental time series
recorded using luciferase (LUC) imaging in constant
light from a wild-type strain [57]. All possible LCs were
considered, corresponding to a network inference carried
out assuming no prior biological knowledge. The cost
function optimized was the same as that used for fitting
to synthetic LL data. As previously, viable clock circuits
were taken to be those yielding autonomous limit cycles
with circadian periods.

The results of fitting to experimental data are pre-
sented in figure 8a. It can be seen that the second
highest-ranking LC giving a viable circuit is a DE con-
figuration. This configuration, GDE, is in fact the same
as that previously determined to be optimal from the
synthetic Arabidopsis datasets. Moreover, figure 8b
shows that GDE emerges as the top-ranking clock con-
figuration if the regulatory structure is constrained to
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Figure 6. Time series for the differential equation and Boolean versions of the clock models in 12:12 LD cycles. Two 24-h cycles
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Differential equation time series (left panels) have been normalized to lie between 0 and 1 in order to facilitate comparison with
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distinguished more easily. The time step used for solving the Boolean models was 0.5 h, equal to the data sampling interval.
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Fig. 3. Fits of eqns. (1) to data generated from the ODE formulation [5] of the
Arabidopsis circuit in Fig. 1. Left panels show the ODE timeseries; right
panels the corresponding BDE timeseries. Top and bottom plots indicate
simulations in constant light and light-dark cycles, respectively.

(1)

Introduction
The GRNs that comprise the circadian clock modulate biological 
function across a range of scales, from gene expression to 
performance and adaptive behaviour [1].
However, optimising the large parameter sets characteristic of these 
models places large demands on computational and experimental 
resources; this constrains the size and 
complexity of the models that can be 
constructed from data (the
parameter explosion problem) [2].
In recent years, it has been shown that 
reduced models and evolutionary
computing can dramatically reduce 
both the parametrisation and 
computational load, making the state 
and parameter spaces more tractable
[3]. In particular, models based on
Boolean delay equations (BDEs) fitted 
to time series data using evolutionary 
algorithms can accurately reproduce the 
behaviour of more biochemically detailed 
models (e.g. ordinary differential 
Equations (ODEs)) [2,4].

Conclusions
BDEs provide a computationally efficient representation of GRN 
dynamics and possess sufficient predictive power to identify 
optimal regulatory structures from experimental data [4,10]. 
Advances in statistical methods, such as cost landscape analysis 
[11] and emulation could further expand the scope of BDE 
modelling to multi-scale models that integrate regulatory and 
metabolic pathways. Towards this aim, a MATLAB package for 
numerically solving BDEs (BDEtools) was recently released [12].

(2)

Boolean Delay Equations
In BDEs, the states xi(t) are represented by logical variables that 
are either ON (xi=1) or OFF (xi=0). A system of n BDEs is written as 

𝑥! 𝑡 = 𝑓! 𝑥# 𝑡 − 𝜏!# , 𝑥( 𝑡 − 𝜏!( , … , 𝑥$ 𝑡 − 𝜏!$ ; 1 ≤ 𝑖 ≤ 𝑛,
where the signalling delays 𝜏ij prescribe the time it takes for xj to 
affect xi and the logic gates fi specify how the interactions between 
{x1,…, xn} determine the state of xi [6,7]. In modelling GRNs, all the 
kinetic constants controlling the production and action of a 
transcription factor are thus telescoped into a single delay [2]. For 
example, the BDE formulation of the circuit in Fig. 1 is the following:

𝐿𝐻𝑌 𝑡 = 𝑋 𝑡 − 𝜏) 𝐿# 𝑡 − 𝜏* ,
𝑇𝑂𝐶1 𝑡 = 𝐿𝐻𝑌 𝑡 − 𝜏# 𝑌 𝑡 − 𝜏+ ,

𝑋 𝑡 = 𝑇𝑂𝐶1 𝑡 − 𝜏( ,
𝑇𝑂𝐶1 𝑡 = 𝐿𝐻𝑌 𝑡 − 𝜏, 𝑇𝑂𝐶1 𝑡 − 𝜏- 𝐿( 𝑡 − 𝜏. + 𝐿) 𝑡 − 𝜏/ .

This provides a significant reduction in complexity, compared with 
the ordinary differential equation model of the same circuit [2], as 
can be seen in Fig. 2. Indeed,
the number of state variables
is decreased from thirteen to
four, whilst the number of 
parameters is reduced from 
64 to 15. This compression of
the parameter space can help
mitigate issues related to
overfitting and identifiability
that are common with ODE
formulations, as well as 
accelerating the process of
finding good fits to data.


